Keywords: beam equation; null-controllability; structural damping; moment problem; biorthogonals
@article{10_1007_s10587_014_0140_7,
author = {Bugariu, Ioan Florin},
title = {Uniform controllability for the beam equation with vanishing structural damping},
journal = {Czechoslovak Mathematical Journal},
pages = {869--881},
year = {2014},
volume = {64},
number = {4},
doi = {10.1007/s10587-014-0140-7},
mrnumber = {3304785},
zbl = {06433701},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0140-7/}
}
TY - JOUR AU - Bugariu, Ioan Florin TI - Uniform controllability for the beam equation with vanishing structural damping JO - Czechoslovak Mathematical Journal PY - 2014 SP - 869 EP - 881 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0140-7/ DO - 10.1007/s10587-014-0140-7 LA - en ID - 10_1007_s10587_014_0140_7 ER -
%0 Journal Article %A Bugariu, Ioan Florin %T Uniform controllability for the beam equation with vanishing structural damping %J Czechoslovak Mathematical Journal %D 2014 %P 869-881 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0140-7/ %R 10.1007/s10587-014-0140-7 %G en %F 10_1007_s10587_014_0140_7
Bugariu, Ioan Florin. Uniform controllability for the beam equation with vanishing structural damping. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 4, pp. 869-881. doi: 10.1007/s10587-014-0140-7
[1] Avdonin, S. A., Ivanov, S. A.: Families of Exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press Cambridge (1995). | MR | Zbl
[2] Ball, J. M., Slemrod, M.: Nonharmonic Fourier series and the stabilization of distributed semilinear control systems. Commun. Pure Appl. Math. 32 (1979), 555-587. | DOI | MR
[3] DiPerna, R. J.: Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82 (1983), 27-70. | DOI | MR | Zbl
[4] Edward, J.: Ingham-type inequalities for complex frequencies and applications to control theory. J. Math. Anal. Appl. 324 (2006), 941-954. | DOI | MR | Zbl
[5] Edward, J., Tebou, L.: Internal null-controllability for a structurally damped beam equation. Asymptotic Anal. 47 (2006), 55-83. | MR | Zbl
[6] Fattorini, H. O., Russell, D. L.: Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Q. Appl. Math. 32 (1974), 45-69. | DOI | MR | Zbl
[7] Fattorini, H. O., Russell, D. L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43 (1971), 272-292. | DOI | MR | Zbl
[8] Ignat, L. I., Zuazua, E.: Dispersive properties of numerical schemes for nonlinear Schrödinger equations. Foundations of Computational Mathematics; Santander, Spain, 2005, London Math. Soc. Lecture Note Ser. 331 Cambridge University Press, Cambridge (2006), 181-207 L. M. Pardo et al. | MR | Zbl
[9] Ignat, L. I., Zuazua, E.: Dispersive properties of a viscous numerical scheme for the Schrödinger equation. C. R., Math., Acad. Sci. Paris 340 (2005), 529-534. | DOI | MR | Zbl
[10] Ingham, A. E.: Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936), 367-379. | DOI | MR | Zbl
[11] Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer Monographs in Mathematics Springer, New York (2005). | MR | Zbl
[12] Lebeau, G., Zuazua, E.: Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141 (1998), 297-329. | DOI | MR | Zbl
[13] Lions, J.-L.: Exact controllability, perturbations and stabilization of distributed systems. Volume 1: Exact controllability. Research in Applied Mathematics 8 Masson, Paris French (1988). | MR
[14] Micu, S., RovenĹŁa, I.: Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM, Control Optim. Calc. Var. 18 (2012), 277-293. | DOI | MR
[15] Seidman, T. I., Avdonin, S. A., Ivanov, S. A.: The `window problem' for series of complex exponentials. J. Fourier Anal. Appl. 6 (2000), 233-254. | DOI | MR | Zbl
[16] Young, R. M.: An Introduction to Nonharmonic Fourier Series. Pure and Applied Mathematics 93 Academic Press, New York (1980). | MR | Zbl
[17] Zabczyk, J.: Mathematical Control Theory: An Introduction. Systems & Control: Foundations & Applications Birkhäuser, Boston (1992). | MR | Zbl
Cité par Sources :