Keywords: restricted Lie superalgebra; $\chi $-reduced representation; indecomposable module; simple module; $p$-character
@article{10_1007_s10587_014_0137_2,
author = {Yao, Yu-Feng},
title = {On representations of restricted {Lie} superalgebras},
journal = {Czechoslovak Mathematical Journal},
pages = {845--856},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0137-2},
mrnumber = {3298565},
zbl = {06391530},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0137-2/}
}
TY - JOUR AU - Yao, Yu-Feng TI - On representations of restricted Lie superalgebras JO - Czechoslovak Mathematical Journal PY - 2014 SP - 845 EP - 856 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0137-2/ DO - 10.1007/s10587-014-0137-2 LA - en ID - 10_1007_s10587_014_0137_2 ER -
Yao, Yu-Feng. On representations of restricted Lie superalgebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 845-856. doi: 10.1007/s10587-014-0137-2
[1] Brundan, J.: Modular representations of the supergroup $Q(n)$. II. Pac. J. Math. 224 65-90 (2006). | DOI | MR | Zbl
[2] Brundan, J., Kleshchev, A.: Modular representations of the supergroup $Q(n)$. I. J. Algebra 260 64-98 (2003). | DOI | MR | Zbl
[3] Brundan, J., Kleshchev, A.: Projective representations of symmetric groups via Sergeev duality. Math. Z. 239 27-68 (2002). | DOI | MR | Zbl
[4] Brundan, J., Kujawa, J.: A new proof of the Mullineux conjecture. J. Algebr. Comb. 18 13-39 (2003). | DOI | MR | Zbl
[5] Friedlander, E. M., Parshall, B. J.: Modular representation theory of Lie algebras. Am. J. Math. 110 1055-1093 (1988). | DOI | MR | Zbl
[6] Jacobson, N.: Lie Algebras. Interscience Tracts in Pure and Applied Mathematics 10 Interscience Publishers (a division of John Wiley & Sons), New York (1962). | MR | Zbl
[7] Jantzen, J. C.: Representations of Lie algebras in prime characteristic. (Notes by Ian Gordon). A. Broer et al. Representation Theories and Algebraic Geometry NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514 Kluwer Academic Publishers, Dordrecht 185-235 (1998). | MR | Zbl
[8] Kac, V. G.: Lie superalgebras. Adv. Math. 26 8-96 (1977). | DOI | MR | Zbl
[9] Kujawa, J.: The Steinberg tensor product theorem for $ {GL}(m|n)$. G. Benkart et al. Representations of Algebraic Groups, Quantum Groups, and Lie Algebras. AMS-IMS-SIAM Joint Summer Research Conference, Snowbird, USA, 2004 Contemp. Math. 413 AMS, Providence 123-132 (2006). | MR | Zbl
[10] Petrogradski, V. M.: Identities in the enveloping algebras for modular Lie superalgebras. J. Algebra 145 1-21 (1992). | DOI | MR
[11] Shu, B., Wang, W.: Modular representations of the ortho-symplectic supergroups. Proc. Lond. Math. Soc. (3) 96 251-271 (2008). | DOI | MR | Zbl
[12] Shu, B., Yao, Y.-F.: Character formulas for restricted simple modules of the special superalgebras. Math. Nachr. 285 1107-1116 (2012). | DOI | MR | Zbl
[13] Shu, B., Zhang, C.: Representations of the restricted Cartan type Lie superalgebra $W(m,n,1)$. Algebr. Represent. Theory 14 463-481 (2011). | DOI | MR | Zbl
[14] Shu, B., Zhang, C.: Restricted representations of the Witt superalgebras. J. Algebra 324 652-672 (2010). | DOI | MR | Zbl
[15] Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic. I. Proc. Lond. Math. Soc. 99 145-167 (2009). | DOI | MR | Zbl
[16] Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic. II. The queer series. J. Pure Appl. Algebra 215 2515-2532 (2011). | DOI | MR | Zbl
[17] Yao, Y.-F.: Non-restricted representations of simple Lie superalgebras of special type and Hamiltonian type. Sci. China, Math. 56 239-252 (2013). | DOI | MR | Zbl
[18] Yao, Y.-F.: On restricted representations of the extended special type Lie superalgebra ${\bar{S}(m, n, 1)}$. Monatsh. Math. 170 239-255 (2013). | DOI | MR
[19] Yao, Y.-F., Shu, B.: Restricted representations of Lie superalgebras of Hamiltonian type. Algebr. Represent. Theory 16 615-632 (2013). | DOI | MR
[20] Zhang, C.: On the simple modules for the restricted Lie superalgebra $\mathop sl(n|1)$. J. Pure Appl. Algebra 213 756-765 (2009). | DOI | MR
[21] Zhang, Y.-Z., Liu, W.-D.: Modular Lie Superalgebras. Scientific Press Beijing, 2001 Chinese. | Zbl
Cité par Sources :