On representations of restricted Lie superalgebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 845-856 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Simple modules for restricted Lie superalgebras are studied. The indecomposability of baby Kac modules and baby Verma modules is proved in some situation. In particular, for the classical Lie superalgebra of type $A(n|0)$, the baby Verma modules $Z_{\chi }(\lambda )$ are proved to be simple for any regular nilpotent $p$-character $\chi $ and typical weight $\lambda $. Moreover, we obtain the dimension formulas for projective covers of simple modules with $p$-characters of standard Levi form.
Simple modules for restricted Lie superalgebras are studied. The indecomposability of baby Kac modules and baby Verma modules is proved in some situation. In particular, for the classical Lie superalgebra of type $A(n|0)$, the baby Verma modules $Z_{\chi }(\lambda )$ are proved to be simple for any regular nilpotent $p$-character $\chi $ and typical weight $\lambda $. Moreover, we obtain the dimension formulas for projective covers of simple modules with $p$-characters of standard Levi form.
DOI : 10.1007/s10587-014-0137-2
Classification : 17B10, 17B35, 17B50
Keywords: restricted Lie superalgebra; $\chi $-reduced representation; indecomposable module; simple module; $p$-character
@article{10_1007_s10587_014_0137_2,
     author = {Yao, Yu-Feng},
     title = {On representations of restricted {Lie} superalgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {845--856},
     year = {2014},
     volume = {64},
     number = {3},
     doi = {10.1007/s10587-014-0137-2},
     mrnumber = {3298565},
     zbl = {06391530},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0137-2/}
}
TY  - JOUR
AU  - Yao, Yu-Feng
TI  - On representations of restricted Lie superalgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 845
EP  - 856
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0137-2/
DO  - 10.1007/s10587-014-0137-2
LA  - en
ID  - 10_1007_s10587_014_0137_2
ER  - 
%0 Journal Article
%A Yao, Yu-Feng
%T On representations of restricted Lie superalgebras
%J Czechoslovak Mathematical Journal
%D 2014
%P 845-856
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0137-2/
%R 10.1007/s10587-014-0137-2
%G en
%F 10_1007_s10587_014_0137_2
Yao, Yu-Feng. On representations of restricted Lie superalgebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 845-856. doi: 10.1007/s10587-014-0137-2

[1] Brundan, J.: Modular representations of the supergroup $Q(n)$. II. Pac. J. Math. 224 65-90 (2006). | DOI | MR | Zbl

[2] Brundan, J., Kleshchev, A.: Modular representations of the supergroup $Q(n)$. I. J. Algebra 260 64-98 (2003). | DOI | MR | Zbl

[3] Brundan, J., Kleshchev, A.: Projective representations of symmetric groups via Sergeev duality. Math. Z. 239 27-68 (2002). | DOI | MR | Zbl

[4] Brundan, J., Kujawa, J.: A new proof of the Mullineux conjecture. J. Algebr. Comb. 18 13-39 (2003). | DOI | MR | Zbl

[5] Friedlander, E. M., Parshall, B. J.: Modular representation theory of Lie algebras. Am. J. Math. 110 1055-1093 (1988). | DOI | MR | Zbl

[6] Jacobson, N.: Lie Algebras. Interscience Tracts in Pure and Applied Mathematics 10 Interscience Publishers (a division of John Wiley & Sons), New York (1962). | MR | Zbl

[7] Jantzen, J. C.: Representations of Lie algebras in prime characteristic. (Notes by Ian Gordon). A. Broer et al. Representation Theories and Algebraic Geometry NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514 Kluwer Academic Publishers, Dordrecht 185-235 (1998). | MR | Zbl

[8] Kac, V. G.: Lie superalgebras. Adv. Math. 26 8-96 (1977). | DOI | MR | Zbl

[9] Kujawa, J.: The Steinberg tensor product theorem for $ {GL}(m|n)$. G. Benkart et al. Representations of Algebraic Groups, Quantum Groups, and Lie Algebras. AMS-IMS-SIAM Joint Summer Research Conference, Snowbird, USA, 2004 Contemp. Math. 413 AMS, Providence 123-132 (2006). | MR | Zbl

[10] Petrogradski, V. M.: Identities in the enveloping algebras for modular Lie superalgebras. J. Algebra 145 1-21 (1992). | DOI | MR

[11] Shu, B., Wang, W.: Modular representations of the ortho-symplectic supergroups. Proc. Lond. Math. Soc. (3) 96 251-271 (2008). | DOI | MR | Zbl

[12] Shu, B., Yao, Y.-F.: Character formulas for restricted simple modules of the special superalgebras. Math. Nachr. 285 1107-1116 (2012). | DOI | MR | Zbl

[13] Shu, B., Zhang, C.: Representations of the restricted Cartan type Lie superalgebra $W(m,n,1)$. Algebr. Represent. Theory 14 463-481 (2011). | DOI | MR | Zbl

[14] Shu, B., Zhang, C.: Restricted representations of the Witt superalgebras. J. Algebra 324 652-672 (2010). | DOI | MR | Zbl

[15] Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic. I. Proc. Lond. Math. Soc. 99 145-167 (2009). | DOI | MR | Zbl

[16] Wang, W., Zhao, L.: Representations of Lie superalgebras in prime characteristic. II. The queer series. J. Pure Appl. Algebra 215 2515-2532 (2011). | DOI | MR | Zbl

[17] Yao, Y.-F.: Non-restricted representations of simple Lie superalgebras of special type and Hamiltonian type. Sci. China, Math. 56 239-252 (2013). | DOI | MR | Zbl

[18] Yao, Y.-F.: On restricted representations of the extended special type Lie superalgebra ${\bar{S}(m, n, 1)}$. Monatsh. Math. 170 239-255 (2013). | DOI | MR

[19] Yao, Y.-F., Shu, B.: Restricted representations of Lie superalgebras of Hamiltonian type. Algebr. Represent. Theory 16 615-632 (2013). | DOI | MR

[20] Zhang, C.: On the simple modules for the restricted Lie superalgebra $\mathop sl(n|1)$. J. Pure Appl. Algebra 213 756-765 (2009). | DOI | MR

[21] Zhang, Y.-Z., Liu, W.-D.: Modular Lie Superalgebras. Scientific Press Beijing, 2001 Chinese. | Zbl

Cité par Sources :