Keywords: larger sieve; pseudorandom number; finite field; special linear group of degree 2; general linear group of degree 2
@article{10_1007_s10587_014_0133_6,
author = {Chamizo, Fernando and Raboso, Dulcinea},
title = {Distributional properties of powers of matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {801--817},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0133-6},
mrnumber = {3298561},
zbl = {06391526},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0133-6/}
}
TY - JOUR AU - Chamizo, Fernando AU - Raboso, Dulcinea TI - Distributional properties of powers of matrices JO - Czechoslovak Mathematical Journal PY - 2014 SP - 801 EP - 817 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0133-6/ DO - 10.1007/s10587-014-0133-6 LA - en ID - 10_1007_s10587_014_0133_6 ER -
%0 Journal Article %A Chamizo, Fernando %A Raboso, Dulcinea %T Distributional properties of powers of matrices %J Czechoslovak Mathematical Journal %D 2014 %P 801-817 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0133-6/ %R 10.1007/s10587-014-0133-6 %G en %F 10_1007_s10587_014_0133_6
Chamizo, Fernando; Raboso, Dulcinea. Distributional properties of powers of matrices. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 801-817. doi: 10.1007/s10587-014-0133-6
[1] Baker, R. C., Harman, G.: Shifted primes without large prime factors. Acta Arith. 83 (1998), 331-361. | DOI | MR | Zbl
[2] Baker, R. C., Harman, G., Pintz, J.: The difference between consecutive primes II. Proc. Lond. Math. Soc. (3) 83 (2001), 532-562. | DOI | MR | Zbl
[3] Chang, M.-C.: Burgess inequality in $\mathbb{F}_{p^2}$. Geom. Funct. Anal. 19 (2009), 1001-1016. | DOI | MR
[4] Davenport, H.: Multiplicative Number Theory (2nd rev. ed.). Graduate Texts in Mathematics 74 Springer, New York (1980). | MR
[5] Eichenauer-Herrmann, J., Grothe, H., Lehn, J.: On the period length of pseudorandom vector sequences generated by matrix generators. Math. Comput. 52 (1989), 145-148. | DOI | MR | Zbl
[6] Friedlander, J., Iwaniec, H.: Opera de Cribro. American Mathematical Society Colloquium Publications 57 Providence (2010). | DOI | MR | Zbl
[7] Gallagher, P. X.: A larger sieve. Acta Arith. 18 (1971), 77-81. | DOI | MR | Zbl
[8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers (6th rev. ed.). Oxford University Press, Oxford (2008). | MR
[9] Harman, G.: Prime-Detecting Sieves. London Mathematical Society Monographs Series 33 Princeton University Press, Princeton (2007). | MR | Zbl
[10] Huxley, M. N.: On the difference between consecutive primes. Invent. Math. 15 (1972), 164-170. | DOI | MR | Zbl
[11] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications 53 Providence (2004). | MR | Zbl
[12] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics John Wiley & Sons, New York (1974). | MR | Zbl
[13] Kurlberg, P.: On the order of unimodular matrices modulo integers. Acta Arith. 110 (2003), 141-151. | DOI | MR | Zbl
[14] Kurlberg, P., Rosenzweig, L., Rudnick, Z.: Matrix elements for the quantum cat map: fluctuations in short windows. Nonlinearity 20 (2007), 2289-2304. | DOI | MR | Zbl
[15] Kurlberg, P., Rudnick, Z.: On quantum ergodicity for linear maps of the torus. Commun. Math. Phys. 222 (2001), 201-227. | DOI | MR | Zbl
[16] L'Ecuyer, P.: Uniform random number generation. Ann. Oper. Res. 53 (1994), 77-120. | DOI | MR | Zbl
[17] Li, W. C. W.: Number Theory with Applications. Series on University Mathematics 7 World Scientific, River Edge (1996). | MR
[18] Maier, H.: Primes in short intervals. Michigan Math. J. 32 (1985), 221-225. | DOI | MR | Zbl
[19] Mollin, R. A.: Advanced Number Theory with Applications. Discrete Mathematics and Its Applications CRC Press, Boca Raton (2010). | MR | Zbl
[20] Montgomery, H. L.: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics 84 AMS, Providence (1994). | MR | Zbl
[21] Montgomery, H. L., Vaughan, R. C.: The large sieve. Mathematika, Lond. 20 (1973), 119-134. | DOI | MR | Zbl
[22] Niederreiter, H.: Statistical independence properties of pseudorandom vectors produced by matrix generators. J. Comput. Appl. Math. 31 (1990), 139-151. | DOI | MR | Zbl
[23] Roskam, H.: A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory 81 (2000), 93-109. | DOI | MR | Zbl
[24] Shoup, V.: Searching for primitive roots in finite fields. Math. Comput. 58 (1992), 369-380. | DOI | MR | Zbl
[25] Stephens, P. J.: An average result for Artin's conjecture. Mathematika, Lond. 16 (1969), 178-188. | DOI | MR | Zbl
Cité par Sources :