Distributional properties of powers of matrices
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 801-817 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We apply the larger sieve to bound the number of $2\times 2$ matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar matrices having large order. In this direction we find matrices of large order when the trace is restricted to take values in a short interval.
We apply the larger sieve to bound the number of $2\times 2$ matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar matrices having large order. In this direction we find matrices of large order when the trace is restricted to take values in a short interval.
DOI : 10.1007/s10587-014-0133-6
Classification : 11C20, 11L05, 11N36, 11Z05
Keywords: larger sieve; pseudorandom number; finite field; special linear group of degree 2; general linear group of degree 2
@article{10_1007_s10587_014_0133_6,
     author = {Chamizo, Fernando and Raboso, Dulcinea},
     title = {Distributional properties of powers of matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {801--817},
     year = {2014},
     volume = {64},
     number = {3},
     doi = {10.1007/s10587-014-0133-6},
     mrnumber = {3298561},
     zbl = {06391526},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0133-6/}
}
TY  - JOUR
AU  - Chamizo, Fernando
AU  - Raboso, Dulcinea
TI  - Distributional properties of powers of matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 801
EP  - 817
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0133-6/
DO  - 10.1007/s10587-014-0133-6
LA  - en
ID  - 10_1007_s10587_014_0133_6
ER  - 
%0 Journal Article
%A Chamizo, Fernando
%A Raboso, Dulcinea
%T Distributional properties of powers of matrices
%J Czechoslovak Mathematical Journal
%D 2014
%P 801-817
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0133-6/
%R 10.1007/s10587-014-0133-6
%G en
%F 10_1007_s10587_014_0133_6
Chamizo, Fernando; Raboso, Dulcinea. Distributional properties of powers of matrices. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 801-817. doi: 10.1007/s10587-014-0133-6

[1] Baker, R. C., Harman, G.: Shifted primes without large prime factors. Acta Arith. 83 (1998), 331-361. | DOI | MR | Zbl

[2] Baker, R. C., Harman, G., Pintz, J.: The difference between consecutive primes II. Proc. Lond. Math. Soc. (3) 83 (2001), 532-562. | DOI | MR | Zbl

[3] Chang, M.-C.: Burgess inequality in $\mathbb{F}_{p^2}$. Geom. Funct. Anal. 19 (2009), 1001-1016. | DOI | MR

[4] Davenport, H.: Multiplicative Number Theory (2nd rev. ed.). Graduate Texts in Mathematics 74 Springer, New York (1980). | MR

[5] Eichenauer-Herrmann, J., Grothe, H., Lehn, J.: On the period length of pseudorandom vector sequences generated by matrix generators. Math. Comput. 52 (1989), 145-148. | DOI | MR | Zbl

[6] Friedlander, J., Iwaniec, H.: Opera de Cribro. American Mathematical Society Colloquium Publications 57 Providence (2010). | DOI | MR | Zbl

[7] Gallagher, P. X.: A larger sieve. Acta Arith. 18 (1971), 77-81. | DOI | MR | Zbl

[8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers (6th rev. ed.). Oxford University Press, Oxford (2008). | MR

[9] Harman, G.: Prime-Detecting Sieves. London Mathematical Society Monographs Series 33 Princeton University Press, Princeton (2007). | MR | Zbl

[10] Huxley, M. N.: On the difference between consecutive primes. Invent. Math. 15 (1972), 164-170. | DOI | MR | Zbl

[11] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications 53 Providence (2004). | MR | Zbl

[12] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics John Wiley & Sons, New York (1974). | MR | Zbl

[13] Kurlberg, P.: On the order of unimodular matrices modulo integers. Acta Arith. 110 (2003), 141-151. | DOI | MR | Zbl

[14] Kurlberg, P., Rosenzweig, L., Rudnick, Z.: Matrix elements for the quantum cat map: fluctuations in short windows. Nonlinearity 20 (2007), 2289-2304. | DOI | MR | Zbl

[15] Kurlberg, P., Rudnick, Z.: On quantum ergodicity for linear maps of the torus. Commun. Math. Phys. 222 (2001), 201-227. | DOI | MR | Zbl

[16] L'Ecuyer, P.: Uniform random number generation. Ann. Oper. Res. 53 (1994), 77-120. | DOI | MR | Zbl

[17] Li, W. C. W.: Number Theory with Applications. Series on University Mathematics 7 World Scientific, River Edge (1996). | MR

[18] Maier, H.: Primes in short intervals. Michigan Math. J. 32 (1985), 221-225. | DOI | MR | Zbl

[19] Mollin, R. A.: Advanced Number Theory with Applications. Discrete Mathematics and Its Applications CRC Press, Boca Raton (2010). | MR | Zbl

[20] Montgomery, H. L.: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics 84 AMS, Providence (1994). | MR | Zbl

[21] Montgomery, H. L., Vaughan, R. C.: The large sieve. Mathematika, Lond. 20 (1973), 119-134. | DOI | MR | Zbl

[22] Niederreiter, H.: Statistical independence properties of pseudorandom vectors produced by matrix generators. J. Comput. Appl. Math. 31 (1990), 139-151. | DOI | MR | Zbl

[23] Roskam, H.: A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory 81 (2000), 93-109. | DOI | MR | Zbl

[24] Shoup, V.: Searching for primitive roots in finite fields. Math. Comput. 58 (1992), 369-380. | DOI | MR | Zbl

[25] Stephens, P. J.: An average result for Artin's conjecture. Mathematika, Lond. 16 (1969), 178-188. | DOI | MR | Zbl

Cité par Sources :