A Maschke type theorem for relative Hom-Hopf modules
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 783-799 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals.
Let $(H,\alpha )$ be a monoidal Hom-Hopf algebra and $(A,\beta )$ a right $(H,\alpha )$-Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor $F $ from the category of relative Hom-Hopf modules to the category of right $(A, \beta )$-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the $(H, \alpha )$-coaction to be separable. This leads to a generalized notion of integrals.
DOI : 10.1007/s10587-014-0132-7
Classification : 16T05
Keywords: monoidal Hom-Hopf algebra; separable functors; Maschke type theorem; total integral; relative Hom-Hopf module
@article{10_1007_s10587_014_0132_7,
     author = {Guo, Shuangjian and Chen, Xiu-Li},
     title = {A {Maschke} type theorem for relative {Hom-Hopf} modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {783--799},
     year = {2014},
     volume = {64},
     number = {3},
     doi = {10.1007/s10587-014-0132-7},
     mrnumber = {3298560},
     zbl = {06391525},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0132-7/}
}
TY  - JOUR
AU  - Guo, Shuangjian
AU  - Chen, Xiu-Li
TI  - A Maschke type theorem for relative Hom-Hopf modules
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 783
EP  - 799
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0132-7/
DO  - 10.1007/s10587-014-0132-7
LA  - en
ID  - 10_1007_s10587_014_0132_7
ER  - 
%0 Journal Article
%A Guo, Shuangjian
%A Chen, Xiu-Li
%T A Maschke type theorem for relative Hom-Hopf modules
%J Czechoslovak Mathematical Journal
%D 2014
%P 783-799
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0132-7/
%R 10.1007/s10587-014-0132-7
%G en
%F 10_1007_s10587_014_0132_7
Guo, Shuangjian; Chen, Xiu-Li. A Maschke type theorem for relative Hom-Hopf modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 783-799. doi: 10.1007/s10587-014-0132-7

[1] Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras. Commun. Algebra 39 (2011), 2216-2240. | DOI | MR | Zbl

[2] Caenepeel, S., Militaru, G., Ion, B., Zhu, S.: Separable functors for the category of Doi-Hopf modules, applications. Adv. Math. 145 (1999), 239-290. | DOI | MR | Zbl

[3] Doi, Y.: Hopf extensions of algebras and Maschke type theorems. Isr. J. Math. 72 (1990), 99-108. | DOI | MR | Zbl

[4] Doi, Y.: Algebras with total integrals. Commun. Algebra 13 (1985), 2137-2159. | MR | Zbl

[5] Doi, Y.: On the structure of relative Hopf modules. Commun. Algebra 11 (1983), 243-255. | DOI | MR | Zbl

[6] Frégier, Y., Gohr, A.: On Hom-type algebras. J. Gen. Lie Theory Appl. 4 (2010), Article ID G101001, pages 16. | DOI | MR | Zbl

[7] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. | DOI | MR | Zbl

[8] Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 9 (2010), 553-589. | DOI | MR | Zbl

[9] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | Zbl

[10] Takeuchi, M.: Relative Hopf modules-equivalences and freeness criteria. J. Algebra 60 (1979), 452-471. | DOI | MR | Zbl

Cité par Sources :