Keywords: distance matrix; Laplacian; characteristic polynomial; eigenvalue
@article{10_1007_s10587_014_0129_2,
author = {Aouchiche, Mustapha and Hansen, Pierre},
title = {Some properties of the distance {Laplacian} eigenvalues of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {751--761},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0129-2},
mrnumber = {3298557},
zbl = {06391522},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/}
}
TY - JOUR AU - Aouchiche, Mustapha AU - Hansen, Pierre TI - Some properties of the distance Laplacian eigenvalues of a graph JO - Czechoslovak Mathematical Journal PY - 2014 SP - 751 EP - 761 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/ DO - 10.1007/s10587-014-0129-2 LA - en ID - 10_1007_s10587_014_0129_2 ER -
%0 Journal Article %A Aouchiche, Mustapha %A Hansen, Pierre %T Some properties of the distance Laplacian eigenvalues of a graph %J Czechoslovak Mathematical Journal %D 2014 %P 751-761 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/ %R 10.1007/s10587-014-0129-2 %G en %F 10_1007_s10587_014_0129_2
Aouchiche, Mustapha; Hansen, Pierre. Some properties of the distance Laplacian eigenvalues of a graph. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 751-761. doi: 10.1007/s10587-014-0129-2
[1] Aouchiche, M., Bonnefoy, J. M., Fidahoussen, A., Caporossi, G., Hansen, P., Hiesse, L., Lacheré, J., Monhait, A.: Variable neighborhood search for extremal graphs. XIV: The AutoGraphiX 2 system. Global Optimization. From Theory to Implementation Nonconvex Optim. Appl. 84 Springer, New York (2006), 281-310 L. Liberti et al. | MR | Zbl
[2] Aouchiche, M., Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. 20. Automated comparison of graph invariants. MATCH Commun. Math. Comput. Chem. 58 (2007), 365-384. | MR | Zbl
[3] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33. | MR | Zbl
[4] G. A. Baker, Jr.: Drum shapes and isospectral graphs. J. Math. Phys. 7 (1966), 2238-2242. | DOI | Zbl
[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext Springer, Berlin (2012). | MR | Zbl
[6] Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. I: The AutoGraphiX system. Discrete Math. 212 (2000), 29-44 (J. Harant et al., eds.). | DOI | MR | Zbl
[7] Collatz, L., Sinogowitz, U.: Spektren endlicher Grafen. Abh. Math. Semin. Univ. Hamb. 21 German (1957), 63-77. | DOI | MR | Zbl
[8] Cvetković, D. M.: Graphs and their spectra. Publ. Fac. Electrotech. Univ. Belgrade, Ser. Math. Phys. 354-356 (1971), 1-50. | MR | Zbl
[9] Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A.: Recent Results in the Theory of Graph Spectra. Annals of Discrete Mathematics 36 North-Holland, Amsterdam (1988). | MR | Zbl
[10] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. J. A. Barth Verlag, Leipzig (1995). | MR | Zbl
[11] Cvetković, D. M., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75 Cambridge University Press, Cambridge (2010). | MR | Zbl
[12] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | MR | Zbl
[13] Fujii, H., Katsuda, A.: Isospectral graphs and isoperimetric constants. Discrete Math. 207 (1999), 33-52. | DOI | MR | Zbl
[14] Günthard, H. H., Primas, H.: Zusammenhang von Graphtheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39 (1956), 1645-1653 German. | DOI
[15] Haemers, W. H., Spence, E.: Enumeration of cospectral graphs. Eur. J. Comb. 25 (2004), 199-211. | DOI | MR | Zbl
[16] Halbeisen, L., Hungerbühler, N.: Generation of isospectral graphs. J. Graph Theory 31 (1999), 255-265. | DOI | MR | Zbl
[17] Holton, D. A., Sheehan, J.: The Petersen Graph. Australian Mathematical Society Lecture Series 7 Cambridge University Press, Cambridge (1993). | MR | Zbl
[18] Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Reprint of the 1969 edition. Dover Publications, New York (1992). | MR
[19] McKay, B. D.: On the spectral characterisation of trees. Ars Comb. 3 (1977), 219-232. | MR | Zbl
[20] Merris, R.: Large families of Laplacian isospectral graphs. Linear Multilinear Algebra 43 (1997), 201-205. | DOI | MR | Zbl
[21] Merris, R.: Laplacian matrices of graphs: A survey. Second Conference of the International Linear Algebra Society, Lisbon, 1992 (J. D. da Silva et al., eds.) Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[22] Mohar, B.: Graph Laplacians. Topics in Algebraic Graph Theory Encyclopedia of Mathematics and its Applications 102 Cambridge University Press, Cambridge (2004), 113-136 L. W. Beineke et al. | MR | Zbl
[23] Schwenk, A. J.: Almost all trees are cospectral. New Directions in the Theory of Graphs. Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971 Academic Press, New York (1973), 275-307 F. Harary. | MR
[24] Tan, J.: On isospectral graphs. Interdiscip. Inf. Sci. 4 (1998), 117-124. | MR | Zbl
[25] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Special Issue on the Combinatorial Matrix Theory Conference, Pohang, 2002 Linear Algebra Appl. 373 (2003), 241-272. | MR
Cité par Sources :