Some properties of the distance Laplacian eigenvalues of a graph
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 751-761.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The distance Laplacian of a connected graph $G$ is defined by $\mathcal {L} = {\rm Diag(Tr)}- \mathcal {D}$, where $\mathcal {D}$ is the distance matrix of $G$, and ${\rm Diag(Tr)}$ is the diagonal matrix whose main entries are the vertex transmissions in $G$. The spectrum of $\mathcal {L}$ is called the distance Laplacian spectrum of $G$. In the present paper, we investigate some particular distance Laplacian eigenvalues. Among other results, we show that the complete graph is the unique graph with only two distinct distance Laplacian eigenvalues. We establish some properties of the distance Laplacian spectrum that enable us to derive the distance Laplacian characteristic polynomials for several classes of graphs.
DOI : 10.1007/s10587-014-0129-2
Classification : 05C12, 05C31, 05C50, 05C76
Keywords: distance matrix; Laplacian; characteristic polynomial; eigenvalue
@article{10_1007_s10587_014_0129_2,
     author = {Aouchiche, Mustapha and Hansen, Pierre},
     title = {Some properties of the distance {Laplacian} eigenvalues of a graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {751--761},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.1007/s10587-014-0129-2},
     mrnumber = {3298557},
     zbl = {06391522},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/}
}
TY  - JOUR
AU  - Aouchiche, Mustapha
AU  - Hansen, Pierre
TI  - Some properties of the distance Laplacian eigenvalues of a graph
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 751
EP  - 761
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/
DO  - 10.1007/s10587-014-0129-2
LA  - en
ID  - 10_1007_s10587_014_0129_2
ER  - 
%0 Journal Article
%A Aouchiche, Mustapha
%A Hansen, Pierre
%T Some properties of the distance Laplacian eigenvalues of a graph
%J Czechoslovak Mathematical Journal
%D 2014
%P 751-761
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/
%R 10.1007/s10587-014-0129-2
%G en
%F 10_1007_s10587_014_0129_2
Aouchiche, Mustapha; Hansen, Pierre. Some properties of the distance Laplacian eigenvalues of a graph. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 751-761. doi : 10.1007/s10587-014-0129-2. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0129-2/

Cité par Sources :