Inserting measurable functions precisely
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 743-749 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces.
A family of subsets of a set is called a $\sigma $-topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A $\sigma $-topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect $\sigma $-topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a $\sigma $-topological version of Katětov-Tong insertion theorem yields a Michael insertion theorem for normal and perfect $\sigma $-topological spaces.
DOI : 10.1007/s10587-014-0128-3
Classification : 28A05, 28A20
Keywords: insertion; $\sigma $-topology; $\sigma $-ring; perfectness; normality; upper measurable function; lower measurable function; measurable function
@article{10_1007_s10587_014_0128_3,
     author = {Guti\'errez Garc{\'\i}a, Javier and Kubiak, Tomasz},
     title = {Inserting measurable functions precisely},
     journal = {Czechoslovak Mathematical Journal},
     pages = {743--749},
     year = {2014},
     volume = {64},
     number = {3},
     doi = {10.1007/s10587-014-0128-3},
     mrnumber = {3298556},
     zbl = {06391521},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0128-3/}
}
TY  - JOUR
AU  - Gutiérrez García, Javier
AU  - Kubiak, Tomasz
TI  - Inserting measurable functions precisely
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 743
EP  - 749
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0128-3/
DO  - 10.1007/s10587-014-0128-3
LA  - en
ID  - 10_1007_s10587_014_0128_3
ER  - 
%0 Journal Article
%A Gutiérrez García, Javier
%A Kubiak, Tomasz
%T Inserting measurable functions precisely
%J Czechoslovak Mathematical Journal
%D 2014
%P 743-749
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0128-3/
%R 10.1007/s10587-014-0128-3
%G en
%F 10_1007_s10587_014_0128_3
Gutiérrez García, Javier; Kubiak, Tomasz. Inserting measurable functions precisely. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 743-749. doi: 10.1007/s10587-014-0128-3

[1] Alexandroff, A. D.: Additive set-functions in abstract spaces. II. Rec. Math. Moscou, Nouvelle Série 9 (1941), 563-628. | MR

[2] Blatter, J., Seever, G. L.: Interposition of semicontinuous functions by continuous functions. Analyse Fonctionnelle et Applications (Comptes Rendus Colloq. d'Analyse, Inst. Mat., Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 1972), Actualités Scientifiques et Industrielles, No. 1367 Hermann, Paris (1975), 27-51. | MR | Zbl

[3] Bukovský, L.: The Structure of the Real Line. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) 71 Birkhäuser, Basel (2011). | MR | Zbl

[4] Gillman, L., Jerison, M.: Rings of Continuous Functions. Graduate Texts in Mathematics 43 Springer, New York (1976). | MR | Zbl

[5] García, J. Gutiérrez, Kubiak, T.: A new look at some classical theorems on continuous functions on normal spaces. Acta Math. Hung. 119 (2008), 333-339. | DOI | MR

[6] Hausdorff, F.: Set Theory. (3rd ed.), Chelsea Publishing Company, New York (1978). | MR | Zbl

[7] Katětov, M.: On real-valued functions in topological spaces. Fundam. Math. 38 (1951), 85-91; Fundam. Math. {\it40} (1953), 203-205 (Correction). | DOI | MR | Zbl

[8] Kotzé, W., Kubiak, T.: Insertion of a measurable function. J. Aust. Math. Soc., Ser. A 57 (1994), 295-304. | DOI | MR | Zbl

[9] Lane, E. P.: Insertion of a continuous function. The Proceedings of the Topology Conference, Ohio Univ., Ohio, 1979, Topol. Proc. 4 (1979), 463-478. | MR | Zbl

[10] Michael, E.: Continuous selections. I. Ann. Math. (2) 63 (1956), 361-382. | DOI | MR | Zbl

[11] Sikorski, R.: Real Functions, Vol. 1. Monografie Matematyczne 35 Państwowe Wydawnictwo Naukowe, Warszawa Polish (1958). | MR

[12] Stone, M. H.: Boundedness properties in function-lattices. Can. J. Math. 1 (1949), 176-186. | DOI | MR | Zbl

[13] Tong, H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292. | DOI | MR | Zbl

[14] Yan, P.-F., Yang, E.-G.: Semi-stratifiable spaces and the insertion of semi-continuous functions. J. Math. Anal. Appl. 328 (2007), 429-437. | DOI | MR | Zbl

Cité par Sources :