Keywords: parabolic initial-boundary value problem; inhomogeneous Robin boundary conditions; existence of weak solution; continuity up to the boundary; asymptotic behavior; asymptotically almost periodic solution
@article{10_1007_s10587_014_0127_4,
author = {Nittka, Robin},
title = {Inhomogeneous parabolic {Neumann} problems},
journal = {Czechoslovak Mathematical Journal},
pages = {703--742},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0127-4},
mrnumber = {3298555},
zbl = {06391520},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0127-4/}
}
Nittka, Robin. Inhomogeneous parabolic Neumann problems. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 703-742. doi: 10.1007/s10587-014-0127-4
[1] Arendt, W.: Resolvent positive operators and inhomogeneous boundary conditions. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 29 (2000), 639-670. | MR | Zbl
[2] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96 Birkhäuser, Basel (2001). | MR | Zbl
[3] Arendt, W., Chovanec, M.: Dirichlet regularity and degenerate diffusion. Trans. Am. Math. Soc. 362 (2010), 5861-5878. | DOI | MR | Zbl
[4] Arendt, W., Nittka, R.: Equivalent complete norms and positivity. Arch. Math. 92 (2009), 414-427. | DOI | MR | Zbl
[5] Arendt, W., Schätzle, R.: Semigroups generated by elliptic operators in non-divergence form on $C_0(\Omega)$. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 13 (2014), 417-434. | MR
[6] Bohr, H.: Almost Periodic Functions. Chelsea Publishing Company, New York (1947). | MR
[7] Bošković, D. M., Krstić, M., Liu, W.: Boundary control of an unstable heat equation via measurement of domain-averaged temperature. IEEE Trans. Autom. Control 46 (2001), 2022-2028. | DOI | MR | Zbl
[8] Cannarsa, P., Gozzi, F., Soner, H. M.: A dynamic programming approach to nonlinear boundary control problems of parabolic type. J. Funct. Anal. 117 (1993), 25-61. | DOI | MR | Zbl
[9] Chapko, R., Kress, R., Yoon, J.-R.: An inverse boundary value problem for the heat equation: the Neumann condition. Inverse Probl. 15 (1999), 1033-1046. | MR | Zbl
[10] Daners, D.: Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217 (2000), 13-41. | DOI | MR | Zbl
[11] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I. Springer, Berlin (1992). | MR | Zbl
[12] Denk, R., Hieber, M., Prüss, J.: Optimal {$L^p$}-{$L^q$}-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257 (2007), 193-224. | DOI | MR | Zbl
[13] Dore, G.: {$L^p$} regularity for abstract differential equations. Functional Analysis and Related Topics Proc. Int. Conference, Kyoto University, 1991. Lect. Notes Math. 1540 Springer, Berlin H. Komatsu 25-38 (1993). | MR
[14] Engel, K.-J.: The Laplacian on {$C(\overline\Omega)$} with generalized Wentzell boundary conditions. Arch. Math. 81 (2003), 548-558. | DOI | MR | Zbl
[15] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194 Springer, Berlin (2000). | MR | Zbl
[16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed. Classics in Mathematics Springer, Berlin (2001). | MR | Zbl
[17] Griepentrog, J. A.: Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007), 1031-1078. | MR | Zbl
[18] Haller-Dintelmann, R., Rehberg, J.: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equations 247 (2009), 1354-1396. | DOI | MR | Zbl
[19] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical Monographs 23 American Mathematical Society, Providence (1968). | MR
[20] Lieberman, G. M.: Second Order Parabolic Differential Equations. World Scientific Singapore (1996). | MR | Zbl
[21] Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Die Grundlehren der mathematischen Wissenschaften, Band 182 Springer, Berlin (1972). | MR | Zbl
[22] Nittka, R.: Quasilinear elliptic and parabolic Robin problems on Lipschitz domains. NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1125-1155. | DOI | MR | Zbl
[23] Nittka, R.: Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differ. Equations 251 (2011), 860-880. | DOI | MR | Zbl
[24] Nittka, R.: Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. PhD Thesis, University of Ulm (2010).
[25] Stepanoff, W.: Über einige Verallgemeinerungen der fast periodischen Funktionen. Math. Ann. 95 (1926), 473-498 German. | DOI | MR
[26] Warma, M.: The Robin and Wentzell-Robin Laplacians on Lipschitz domains. Semigroup Forum 73 (2006), 10-30. | DOI | MR | Zbl
Cité par Sources :