On Hardy $q$-inequalities
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 659-682
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Some $q$-analysis variants of Hardy type inequalities of the form $$ \int _0^b \bigg (x^{\alpha -1} \int _0^x t^{-\alpha } f(t) {\rm d}_q t \bigg )^{p} {\rm d}_q x \leq C \int _0^b f^p(t) {\rm d}_q t $$ with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
Some $q$-analysis variants of Hardy type inequalities of the form $$ \int _0^b \bigg (x^{\alpha -1} \int _0^x t^{-\alpha } f(t) {\rm d}_q t \bigg )^{p} {\rm d}_q x \leq C \int _0^b f^p(t) {\rm d}_q t $$ with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
DOI :
10.1007/s10587-014-0125-6
Classification :
26D10, 26D15, 39A13
Keywords: inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality
Keywords: inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality
@article{10_1007_s10587_014_0125_6,
author = {Maligranda, Lech and Oinarov, Ryskul and Persson, Lars-Erik},
title = {On {Hardy} $q$-inequalities},
journal = {Czechoslovak Mathematical Journal},
pages = {659--682},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0125-6},
mrnumber = {3298553},
zbl = {06391518},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/}
}
TY - JOUR AU - Maligranda, Lech AU - Oinarov, Ryskul AU - Persson, Lars-Erik TI - On Hardy $q$-inequalities JO - Czechoslovak Mathematical Journal PY - 2014 SP - 659 EP - 682 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/ DO - 10.1007/s10587-014-0125-6 LA - en ID - 10_1007_s10587_014_0125_6 ER -
%0 Journal Article %A Maligranda, Lech %A Oinarov, Ryskul %A Persson, Lars-Erik %T On Hardy $q$-inequalities %J Czechoslovak Mathematical Journal %D 2014 %P 659-682 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/ %R 10.1007/s10587-014-0125-6 %G en %F 10_1007_s10587_014_0125_6
Maligranda, Lech; Oinarov, Ryskul; Persson, Lars-Erik. On Hardy $q$-inequalities. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 659-682. doi: 10.1007/s10587-014-0125-6
Cité par Sources :