On Hardy $q$-inequalities
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 659-682.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Some $q$-analysis variants of Hardy type inequalities of the form $$ \int _0^b \bigg (x^{\alpha -1} \int _0^x t^{-\alpha } f(t) {\rm d}_q t \bigg )^{p} {\rm d}_q x \leq C \int _0^b f^p(t) {\rm d}_q t $$ with sharp constant $C$ are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
DOI : 10.1007/s10587-014-0125-6
Classification : 26D10, 26D15, 39A13
Keywords: inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality
@article{10_1007_s10587_014_0125_6,
     author = {Maligranda, Lech and Oinarov, Ryskul and Persson, Lars-Erik},
     title = {On {Hardy} $q$-inequalities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {659--682},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.1007/s10587-014-0125-6},
     mrnumber = {3298553},
     zbl = {06391518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/}
}
TY  - JOUR
AU  - Maligranda, Lech
AU  - Oinarov, Ryskul
AU  - Persson, Lars-Erik
TI  - On Hardy $q$-inequalities
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 659
EP  - 682
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/
DO  - 10.1007/s10587-014-0125-6
LA  - en
ID  - 10_1007_s10587_014_0125_6
ER  - 
%0 Journal Article
%A Maligranda, Lech
%A Oinarov, Ryskul
%A Persson, Lars-Erik
%T On Hardy $q$-inequalities
%J Czechoslovak Mathematical Journal
%D 2014
%P 659-682
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/
%R 10.1007/s10587-014-0125-6
%G en
%F 10_1007_s10587_014_0125_6
Maligranda, Lech; Oinarov, Ryskul; Persson, Lars-Erik. On Hardy $q$-inequalities. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 659-682. doi : 10.1007/s10587-014-0125-6. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/

Cité par Sources :