Keywords: inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; $q$-analysis; sharp constant; discrete Hardy type inequality
@article{10_1007_s10587_014_0125_6,
author = {Maligranda, Lech and Oinarov, Ryskul and Persson, Lars-Erik},
title = {On {Hardy} $q$-inequalities},
journal = {Czechoslovak Mathematical Journal},
pages = {659--682},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0125-6},
mrnumber = {3298553},
zbl = {06391518},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/}
}
TY - JOUR AU - Maligranda, Lech AU - Oinarov, Ryskul AU - Persson, Lars-Erik TI - On Hardy $q$-inequalities JO - Czechoslovak Mathematical Journal PY - 2014 SP - 659 EP - 682 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/ DO - 10.1007/s10587-014-0125-6 LA - en ID - 10_1007_s10587_014_0125_6 ER -
%0 Journal Article %A Maligranda, Lech %A Oinarov, Ryskul %A Persson, Lars-Erik %T On Hardy $q$-inequalities %J Czechoslovak Mathematical Journal %D 2014 %P 659-682 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0125-6/ %R 10.1007/s10587-014-0125-6 %G en %F 10_1007_s10587_014_0125_6
Maligranda, Lech; Oinarov, Ryskul; Persson, Lars-Erik. On Hardy $q$-inequalities. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 659-682. doi: 10.1007/s10587-014-0125-6
[1] Al-Salam, W. A.: Some fractional $q$-integrals and $q$-derivatives. Proc. Edinb. Math. Soc., II. Ser. 15 (1966), 135-140. | DOI | MR | Zbl
[2] Bangerezako, G.: Variational calculus on $q$-nonuniform lattices. J. Math. Anal. Appl. 306 (2005), 161-179. | DOI | MR | Zbl
[3] Bennett, G.: Factorizing the Classical Inequalities. Memoirs of the American Mathematical Society 576 AMS, Providence (1996). | MR | Zbl
[4] Bennett, G.: Inequalities complementary to Hardy. Q. J. Math., Oxf. II. Ser. 49 (1998), 395-432. | DOI | MR
[5] Bennett, G.: Series of positive terms. Conf. Proc. Poznań, Poland, 2003 Z. Ciesielski et al. Banach Center Publications 64 Polish Academy of Sciences, Institute of Mathematics, Warsaw (2004), 29-38. | MR | Zbl
[6] Bennett, G.: Sums of powers and the meaning of $l^p$. Houston J. Math. 32 (2006), 801-831. | MR
[7] Cass, F. P., Kratz, W.: Nörlund and weighted mean matrices as operators on $l_p$. Rocky Mt. J. Math. 20 (1990), 59-74. | DOI | MR
[8] Ernst, T.: A Comprehensive Treatment of $q$-calculus. Birkhäuser Basel (2012). | MR | Zbl
[9] Ernst, T.: The History of $q$-Calculus and a New Method. Uppsala University Uppsala (2000), http://www2.math.uu.se/research/pub/Ernst4.pdf
[10] Exton, H.: $q$-Hypergeometric Functions and Applications. Ellis Horwood Series in Mathematics and Its Applications Halsted Press, Chichester (1983). | MR | Zbl
[11] Gao, P.: A note on Hardy-type inequalities. Proc. Am. Math. Soc. 133 (2005), 1977-1984. | DOI | MR | Zbl
[12] Gao, P.: Hardy-type inequalities via auxiliary sequences. J. Math. Anal. Appl. 343 (2008), 48-57. | DOI | MR | Zbl
[13] Gao, P.: On $l^p$ norms of weighted mean matrices. Math. Z. 264 (2010), 829-848. | DOI | MR | Zbl
[14] Gao, P.: On weighted mean matrices whose $l^p$ norms are determined on decreasing sequences. Math. Inequal. Appl. 14 (2011), 373-387. | MR | Zbl
[15] Gauchman, H.: Integral inequalities in $q$-calculus. Comput. Math. Appl. 47 (2004), 281-300. | DOI | MR | Zbl
[16] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. (2nd ed.), Cambridge University Press Cambridge (1952). | MR | Zbl
[17] Jackson, F. H.: On $q$-definite integrals. Quart. J. 41 (1910), 193-203.
[18] Kac, V., Cheung, P.: Quantum Calculus. Universitext Springer, New York (2002). | MR | Zbl
[19] Krasniqi, V.: Erratum: Several $q$-integral inequalities. J. Math. Inequal. 5 (2011), 451. | DOI | MR | Zbl
[20] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. About Its History and Some Related Results. Vydavatelský Servis Plzeň (2007). | MR | Zbl
[21] Kufner, A., Maligranda, L., Persson, L.-E.: The prehistory of the Hardy inequality. Am. Math. Mon. 113 (2006), 715-732. | DOI | MR | Zbl
[22] Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific Singapore (2003). | MR | Zbl
[23] Maligranda, L.: Why Hölder's inequality should be called Rogers' inequality. Math. Inequal. Appl. 1 (1998), 69-83. | DOI | MR | Zbl
[24] Miao, Y., Qi, F.: Several $q$-integral inequalities. J. Math. Inequal. 3 (2009), 115-121. | DOI | MR | Zbl
[25] Persson, L.-E., Samko, N.: What should have happened if Hardy had discovered this?. J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 29, 11 pages. | MR | Zbl
[26] Stanković, M. S., Rajković, P. M., Marinković, S. D.: On $q$-fractional derivatives of Riemann-Liouville and Caputo type. arXiv: 0909.0387v1[math.CA], 2 Sept. 2009.
[27] Sulaiman, W. T.: New types of $q$-integral inequalities. Advances in Pure Math. 1 (2011), 77-80. | DOI | MR
Cité par Sources :