Keywords: iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity
@article{10_1007_s10587_014_0122_9,
author = {Ju, Tengxia and Wu, Meiyun},
title = {On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$},
journal = {Czechoslovak Mathematical Journal},
pages = {611--628},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0122-9},
mrnumber = {3298550},
zbl = {06391515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0122-9/}
}
TY - JOUR
AU - Ju, Tengxia
AU - Wu, Meiyun
TI - On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$
JO - Czechoslovak Mathematical Journal
PY - 2014
SP - 611
EP - 628
VL - 64
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0122-9/
DO - 10.1007/s10587-014-0122-9
LA - en
ID - 10_1007_s10587_014_0122_9
ER -
%0 Journal Article
%A Ju, Tengxia
%A Wu, Meiyun
%T On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$
%J Czechoslovak Mathematical Journal
%D 2014
%P 611-628
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0122-9/
%R 10.1007/s10587-014-0122-9
%G en
%F 10_1007_s10587_014_0122_9
Ju, Tengxia; Wu, Meiyun. On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 611-628. doi: 10.1007/s10587-014-0122-9
[1] Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring. J. Algebra 274 (2004), 847-855. | DOI | MR | Zbl
[2] Akhtar, R., Lee, L.: Connectivity of the zero-divisor graph of finite rings. https//www.researchgate.net/publication/228569713
[3] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. | DOI | MR | Zbl
[4] Carmichael, R. D.: Note on a new number theory function. Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. | DOI | MR
[5] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. 2nd Graduate Texts in Mathematics 84 Springer, New York (1990). | MR | Zbl
[6] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry. CMS Books in Mathematics 9 Springer, New York (2001). | MR | Zbl
[7] Skowronek-Kaziów, J.: Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring $\mathbb{Z}_n$. Inf. Process. Lett. 108 (2008), 165-169. | DOI | MR
[8] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR
[9] Somer, L., Křížek, M.: Stucture of digraphs associated with quadratic congruences with composite moduli. Discrete Math. 306 (2006), 2174-2185. | DOI | MR
[10] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$. Czech. Math. J. 61 (2011), 337-358. | DOI | MR | Zbl
[11] Vasiga, T., Shallit, J.: On the iteration of certain quadratic maps over GF($p$). Discrete Math. 277 (2004), 219-240. | DOI | MR | Zbl
[12] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. | MR | Zbl
Cité par Sources :