On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 611-628
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the first part, we assign to each positive integer $n$ a digraph $\Gamma (n,5),$ whose set of vertices consists of elements of the ring $\mathbb {Z}_n=\{0,1,\cdots ,n-1\}$ with the addition and the multiplication operations modulo $n,$ and for which there is a directed edge from $a$ to $b$ if and only if $a^5\equiv b\pmod n$. Associated with $\Gamma (n,5)$ are two disjoint subdigraphs: $\Gamma _1(n,5)$ and $\Gamma _2(n,5)$ whose union is $\Gamma (n,5).$ The vertices of $\Gamma _1(n,5)$ are coprime to $n,$ and the vertices of $\Gamma _2(n,5)$ are not coprime to $n.$ In this part, we study the structure of $\Gamma (n,5)$ in detail. \endgraf In the second part, we investigate the zero-divisor graph $G(\mathbb {Z}_n)$ of the ring $\mathbb {Z}_n.$ Its vertex- and edge-connectivity are discussed.
In the first part, we assign to each positive integer $n$ a digraph $\Gamma (n,5),$ whose set of vertices consists of elements of the ring $\mathbb {Z}_n=\{0,1,\cdots ,n-1\}$ with the addition and the multiplication operations modulo $n,$ and for which there is a directed edge from $a$ to $b$ if and only if $a^5\equiv b\pmod n$. Associated with $\Gamma (n,5)$ are two disjoint subdigraphs: $\Gamma _1(n,5)$ and $\Gamma _2(n,5)$ whose union is $\Gamma (n,5).$ The vertices of $\Gamma _1(n,5)$ are coprime to $n,$ and the vertices of $\Gamma _2(n,5)$ are not coprime to $n.$ In this part, we study the structure of $\Gamma (n,5)$ in detail. \endgraf In the second part, we investigate the zero-divisor graph $G(\mathbb {Z}_n)$ of the ring $\mathbb {Z}_n.$ Its vertex- and edge-connectivity are discussed.
DOI :
10.1007/s10587-014-0122-9
Classification :
05C20, 05C25, 11A07
Keywords: iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity
Keywords: iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity
@article{10_1007_s10587_014_0122_9,
author = {Ju, Tengxia and Wu, Meiyun},
title = {On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$},
journal = {Czechoslovak Mathematical Journal},
pages = {611--628},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0122-9},
mrnumber = {3298550},
zbl = {06391515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0122-9/}
}
TY - JOUR
AU - Ju, Tengxia
AU - Wu, Meiyun
TI - On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$
JO - Czechoslovak Mathematical Journal
PY - 2014
SP - 611
EP - 628
VL - 64
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0122-9/
DO - 10.1007/s10587-014-0122-9
LA - en
ID - 10_1007_s10587_014_0122_9
ER -
%0 Journal Article
%A Ju, Tengxia
%A Wu, Meiyun
%T On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$
%J Czechoslovak Mathematical Journal
%D 2014
%P 611-628
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0122-9/
%R 10.1007/s10587-014-0122-9
%G en
%F 10_1007_s10587_014_0122_9
Ju, Tengxia; Wu, Meiyun. On iteration digraph and zero-divisor graph of the ring $\mathbb {Z}_n$. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 611-628. doi: 10.1007/s10587-014-0122-9
Cité par Sources :