Geometry of the spectral semidistance in Banach algebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 599-610.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ be a unital Banach algebra over $\mathbb C$, and suppose that the nonzero spectral values of $a$ and $b\in A$ are discrete sets which cluster at $0\in \mathbb C$, if anywhere. We develop a plane geometric formula for the spectral semidistance of $a$ and $b$ which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that $a$ and $b$ are quasinilpotent equivalent if and only if all the Riesz projections, $p(\alpha ,a)$ and $p(\alpha ,b)$, correspond. For certain important classes of decomposable operators (compact, Riesz, etc.), the proposed formula reduces the involvement of the underlying Banach space $X$ in the computation of the spectral semidistance, and appears to be a useful alternative to Vasilescu's geometric formula (which requires the knowledge of the local spectra of the operators at each $0\not =x\in X$). The apparent advantage gained through the use of a global spectral parameter in the formula aside, various methods of complex analysis can then be employed to deal with the spectral projections; we give examples illustrating the usefulness of the main results.
DOI : 10.1007/s10587-014-0121-x
Classification : 46H05, 47A05, 47A10
Keywords: asymptotically intertwined; Riesz projection; spectral semidistance; quasinilpotent equivalent
@article{10_1007_s10587_014_0121_x,
     author = {Braatvedt, Gareth and Brits, Rudi},
     title = {Geometry of the spectral semidistance in {Banach} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {599--610},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2014},
     doi = {10.1007/s10587-014-0121-x},
     mrnumber = {3298549},
     zbl = {06391514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/}
}
TY  - JOUR
AU  - Braatvedt, Gareth
AU  - Brits, Rudi
TI  - Geometry of the spectral semidistance in Banach algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 599
EP  - 610
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/
DO  - 10.1007/s10587-014-0121-x
LA  - en
ID  - 10_1007_s10587_014_0121_x
ER  - 
%0 Journal Article
%A Braatvedt, Gareth
%A Brits, Rudi
%T Geometry of the spectral semidistance in Banach algebras
%J Czechoslovak Mathematical Journal
%D 2014
%P 599-610
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/
%R 10.1007/s10587-014-0121-x
%G en
%F 10_1007_s10587_014_0121_x
Braatvedt, Gareth; Brits, Rudi. Geometry of the spectral semidistance in Banach algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 599-610. doi : 10.1007/s10587-014-0121-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/

Cité par Sources :