Geometry of the spectral semidistance in Banach algebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 599-610
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A$ be a unital Banach algebra over $\mathbb C$, and suppose that the nonzero spectral values of $a$ and $b\in A$ are discrete sets which cluster at $0\in \mathbb C$, if anywhere. We develop a plane geometric formula for the spectral semidistance of $a$ and $b$ which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that $a$ and $b$ are quasinilpotent equivalent if and only if all the Riesz projections, $p(\alpha ,a)$ and $p(\alpha ,b)$, correspond. For certain important classes of decomposable operators (compact, Riesz, etc.), the proposed formula reduces the involvement of the underlying Banach space $X$ in the computation of the spectral semidistance, and appears to be a useful alternative to Vasilescu's geometric formula (which requires the knowledge of the local spectra of the operators at each $0\not =x\in X$). The apparent advantage gained through the use of a global spectral parameter in the formula aside, various methods of complex analysis can then be employed to deal with the spectral projections; we give examples illustrating the usefulness of the main results.
DOI :
10.1007/s10587-014-0121-x
Classification :
46H05, 47A05, 47A10
Keywords: asymptotically intertwined; Riesz projection; spectral semidistance; quasinilpotent equivalent
Keywords: asymptotically intertwined; Riesz projection; spectral semidistance; quasinilpotent equivalent
@article{10_1007_s10587_014_0121_x,
author = {Braatvedt, Gareth and Brits, Rudi},
title = {Geometry of the spectral semidistance in {Banach} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {599--610},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {2014},
doi = {10.1007/s10587-014-0121-x},
mrnumber = {3298549},
zbl = {06391514},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/}
}
TY - JOUR AU - Braatvedt, Gareth AU - Brits, Rudi TI - Geometry of the spectral semidistance in Banach algebras JO - Czechoslovak Mathematical Journal PY - 2014 SP - 599 EP - 610 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/ DO - 10.1007/s10587-014-0121-x LA - en ID - 10_1007_s10587_014_0121_x ER -
%0 Journal Article %A Braatvedt, Gareth %A Brits, Rudi %T Geometry of the spectral semidistance in Banach algebras %J Czechoslovak Mathematical Journal %D 2014 %P 599-610 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0121-x/ %R 10.1007/s10587-014-0121-x %G en %F 10_1007_s10587_014_0121_x
Braatvedt, Gareth; Brits, Rudi. Geometry of the spectral semidistance in Banach algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 599-610. doi: 10.1007/s10587-014-0121-x
Cité par Sources :