Keywords: weighted Lorentz space; weighted inequality; non-increasing rearrangement; Banach function space; associate space
@article{10_1007_s10587_014_0120_y,
author = {Gogatishvili, Amiran and Soudsk\'y, Filip},
title = {Normability of {Lorentz} spaces{\textemdash}an alternative approach},
journal = {Czechoslovak Mathematical Journal},
pages = {581--597},
year = {2014},
volume = {64},
number = {3},
doi = {10.1007/s10587-014-0120-y},
mrnumber = {3298548},
zbl = {06391513},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0120-y/}
}
TY - JOUR AU - Gogatishvili, Amiran AU - Soudský, Filip TI - Normability of Lorentz spaces—an alternative approach JO - Czechoslovak Mathematical Journal PY - 2014 SP - 581 EP - 597 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0120-y/ DO - 10.1007/s10587-014-0120-y LA - en ID - 10_1007_s10587_014_0120_y ER -
%0 Journal Article %A Gogatishvili, Amiran %A Soudský, Filip %T Normability of Lorentz spaces—an alternative approach %J Czechoslovak Mathematical Journal %D 2014 %P 581-597 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0120-y/ %R 10.1007/s10587-014-0120-y %G en %F 10_1007_s10587_014_0120_y
Gogatishvili, Amiran; Soudský, Filip. Normability of Lorentz spaces—an alternative approach. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 581-597. doi: 10.1007/s10587-014-0120-y
[1] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics 129 Academic Press, Boston (1988). | MR | Zbl
[2] Carro, M., Pick, L., Soria, J., Stepanov, V. D.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4 (2001), 397-428. | MR | Zbl
[3] Cwikel, M., Kamińska, A., Maligranda, L., Pick, L.: Are generalized Lorentz ``spaces'' really spaces?. Proc. Am. Math. Soc. 132 (2004), 3615-3625. | DOI | MR | Zbl
[4] Gogatishvili, A., Pick, L.: Embeddings and duality theorem for weak classical Lorentz spaces. Can. Math. Bull. 49 (2006), 82-95. | DOI | MR | Zbl
[5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms. Publ. Mat., Barc. 47 (2003), 311-358. | DOI | MR | Zbl
[6] Lorentz, G. G.: On the theory of spaces $\Lambda$. Pac. J. Math. 1 (1951), 411-429. | DOI | MR | Zbl
[7] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96 (1990), 145-158. | DOI | MR | Zbl
Cité par Sources :