Normability of Lorentz spaces—an alternative approach
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 581-597
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study normability properties of classical Lorentz spaces. Given a certain general lattice-like structure, we first prove a general sufficient condition for its associate space to be a Banach function space. We use this result to develop an alternative approach to Sawyer's characterization of normability of a classical Lorentz space of type $\Lambda $. Furthermore, we also use this method in the weak case and characterize normability of $\Lambda _{v}^{\infty }$. Finally, we characterize the linearity of the space $\Lambda _{v}^{\infty }$ by a simple condition on the weight $v$.
We study normability properties of classical Lorentz spaces. Given a certain general lattice-like structure, we first prove a general sufficient condition for its associate space to be a Banach function space. We use this result to develop an alternative approach to Sawyer's characterization of normability of a classical Lorentz space of type $\Lambda $. Furthermore, we also use this method in the weak case and characterize normability of $\Lambda _{v}^{\infty }$. Finally, we characterize the linearity of the space $\Lambda _{v}^{\infty }$ by a simple condition on the weight $v$.
DOI : 10.1007/s10587-014-0120-y
Classification : 46E30
Keywords: weighted Lorentz space; weighted inequality; non-increasing rearrangement; Banach function space; associate space
@article{10_1007_s10587_014_0120_y,
     author = {Gogatishvili, Amiran and Soudsk\'y, Filip},
     title = {Normability of {Lorentz} spaces{\textemdash}an alternative approach},
     journal = {Czechoslovak Mathematical Journal},
     pages = {581--597},
     year = {2014},
     volume = {64},
     number = {3},
     doi = {10.1007/s10587-014-0120-y},
     mrnumber = {3298548},
     zbl = {06391513},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0120-y/}
}
TY  - JOUR
AU  - Gogatishvili, Amiran
AU  - Soudský, Filip
TI  - Normability of Lorentz spaces—an alternative approach
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 581
EP  - 597
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0120-y/
DO  - 10.1007/s10587-014-0120-y
LA  - en
ID  - 10_1007_s10587_014_0120_y
ER  - 
%0 Journal Article
%A Gogatishvili, Amiran
%A Soudský, Filip
%T Normability of Lorentz spaces—an alternative approach
%J Czechoslovak Mathematical Journal
%D 2014
%P 581-597
%V 64
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0120-y/
%R 10.1007/s10587-014-0120-y
%G en
%F 10_1007_s10587_014_0120_y
Gogatishvili, Amiran; Soudský, Filip. Normability of Lorentz spaces—an alternative approach. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 3, pp. 581-597. doi: 10.1007/s10587-014-0120-y

[1] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics 129 Academic Press, Boston (1988). | MR | Zbl

[2] Carro, M., Pick, L., Soria, J., Stepanov, V. D.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4 (2001), 397-428. | MR | Zbl

[3] Cwikel, M., Kamińska, A., Maligranda, L., Pick, L.: Are generalized Lorentz ``spaces'' really spaces?. Proc. Am. Math. Soc. 132 (2004), 3615-3625. | DOI | MR | Zbl

[4] Gogatishvili, A., Pick, L.: Embeddings and duality theorem for weak classical Lorentz spaces. Can. Math. Bull. 49 (2006), 82-95. | DOI | MR | Zbl

[5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms. Publ. Mat., Barc. 47 (2003), 311-358. | DOI | MR | Zbl

[6] Lorentz, G. G.: On the theory of spaces $\Lambda$. Pac. J. Math. 1 (1951), 411-429. | DOI | MR | Zbl

[7] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96 (1990), 145-158. | DOI | MR | Zbl

Cité par Sources :