Keywords: Cohen factorization; Gorenstein dimension; Gorenstein homomorphism; semi-dualizing complex
@article{10_1007_s10587_014_0119_4,
author = {Dejun, Wu},
title = {G-dimension over local homomorphisms with respect to a semi-dualizing complex},
journal = {Czechoslovak Mathematical Journal},
pages = {567--579},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0119-4},
mrnumber = {3277754},
zbl = {06391512},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0119-4/}
}
TY - JOUR AU - Dejun, Wu TI - G-dimension over local homomorphisms with respect to a semi-dualizing complex JO - Czechoslovak Mathematical Journal PY - 2014 SP - 567 EP - 579 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0119-4/ DO - 10.1007/s10587-014-0119-4 LA - en ID - 10_1007_s10587_014_0119_4 ER -
%0 Journal Article %A Dejun, Wu %T G-dimension over local homomorphisms with respect to a semi-dualizing complex %J Czechoslovak Mathematical Journal %D 2014 %P 567-579 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0119-4/ %R 10.1007/s10587-014-0119-4 %G en %F 10_1007_s10587_014_0119_4
Dejun, Wu. G-dimension over local homomorphisms with respect to a semi-dualizing complex. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 567-579. doi: 10.1007/s10587-014-0119-4
[1] Auslander, M., Bridger, M.: Stable Module Theory. Mem. Am. Math. Soc. 94 Providence (1969). | MR | Zbl
[2] Avramov, L. L., Foxby, H.-B.: Locally Gorenstein homomorphisms. Am. J. Math. 114 (1992), 1007-1047. | DOI | MR | Zbl
[3] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. 75 (1997), 241-270. | DOI | MR | Zbl
[4] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms. J. Algebra 164 (1994), 124-145. | DOI | MR | Zbl
[5] Bennis, D., Mahdou, N.: First, second, and third change of rings theorems for Gorenstein homological dimensions. Commun. Algebra 38 (2010), 3837-3850. | DOI | MR | Zbl
[6] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747 Sprin-ger, Berlin (2000). | DOI | MR | Zbl
[7] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | Zbl
[8] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61 (2009), 76-108. | DOI | MR | Zbl
[9] Foxby, H.-B., Iyengar, S.: Depth and amplitude for unbounded complexes. Commutative Algebra. Interactions with Algebraic Geometry L. L. Avramov et al. Contemp. Math. 331 American Mathematical Society, Providence, RI (2003), 119-137. | DOI | MR | Zbl
[10] Iyengar, S.: Depth for complexes, and intersection theorems. Math. Z. 230 (1999), 545-567. | DOI | MR | Zbl
[11] Iyengar, S., Sather-Wagstaff, S.: G-dimension over local homomorphisms. Applications to the Frobenius endomorphism. Illinois J. Math. 48 (2004), 241-272. | DOI | MR | Zbl
Cité par Sources :