G-dimension over local homomorphisms with respect to a semi-dualizing complex
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 567-579 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the G-dimension over local ring homomorphisms with respect to a semi-dualizing complex. Some results that track the behavior of Gorenstein properties over local ring homomorphisms under composition and decomposition are given. As an application, we characterize a dualizing complex for $R$ in terms of the finiteness of the G-dimension over local ring homomorphisms with respect to a semi-dualizing complex.
We study the G-dimension over local ring homomorphisms with respect to a semi-dualizing complex. Some results that track the behavior of Gorenstein properties over local ring homomorphisms under composition and decomposition are given. As an application, we characterize a dualizing complex for $R$ in terms of the finiteness of the G-dimension over local ring homomorphisms with respect to a semi-dualizing complex.
DOI : 10.1007/s10587-014-0119-4
Classification : 13D02, 13D05, 13D07
Keywords: Cohen factorization; Gorenstein dimension; Gorenstein homomorphism; semi-dualizing complex
@article{10_1007_s10587_014_0119_4,
     author = {Dejun, Wu},
     title = {G-dimension over local homomorphisms with respect to a semi-dualizing complex},
     journal = {Czechoslovak Mathematical Journal},
     pages = {567--579},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0119-4},
     mrnumber = {3277754},
     zbl = {06391512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0119-4/}
}
TY  - JOUR
AU  - Dejun, Wu
TI  - G-dimension over local homomorphisms with respect to a semi-dualizing complex
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 567
EP  - 579
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0119-4/
DO  - 10.1007/s10587-014-0119-4
LA  - en
ID  - 10_1007_s10587_014_0119_4
ER  - 
%0 Journal Article
%A Dejun, Wu
%T G-dimension over local homomorphisms with respect to a semi-dualizing complex
%J Czechoslovak Mathematical Journal
%D 2014
%P 567-579
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0119-4/
%R 10.1007/s10587-014-0119-4
%G en
%F 10_1007_s10587_014_0119_4
Dejun, Wu. G-dimension over local homomorphisms with respect to a semi-dualizing complex. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 567-579. doi: 10.1007/s10587-014-0119-4

[1] Auslander, M., Bridger, M.: Stable Module Theory. Mem. Am. Math. Soc. 94 Providence (1969). | MR | Zbl

[2] Avramov, L. L., Foxby, H.-B.: Locally Gorenstein homomorphisms. Am. J. Math. 114 (1992), 1007-1047. | DOI | MR | Zbl

[3] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. 75 (1997), 241-270. | DOI | MR | Zbl

[4] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms. J. Algebra 164 (1994), 124-145. | DOI | MR | Zbl

[5] Bennis, D., Mahdou, N.: First, second, and third change of rings theorems for Gorenstein homological dimensions. Commun. Algebra 38 (2010), 3837-3850. | DOI | MR | Zbl

[6] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747 Sprin-ger, Berlin (2000). | DOI | MR | Zbl

[7] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | Zbl

[8] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61 (2009), 76-108. | DOI | MR | Zbl

[9] Foxby, H.-B., Iyengar, S.: Depth and amplitude for unbounded complexes. Commutative Algebra. Interactions with Algebraic Geometry L. L. Avramov et al. Contemp. Math. 331 American Mathematical Society, Providence, RI (2003), 119-137. | DOI | MR | Zbl

[10] Iyengar, S.: Depth for complexes, and intersection theorems. Math. Z. 230 (1999), 545-567. | DOI | MR | Zbl

[11] Iyengar, S., Sather-Wagstaff, S.: G-dimension over local homomorphisms. Applications to the Frobenius endomorphism. Illinois J. Math. 48 (2004), 241-272. | DOI | MR | Zbl

Cité par Sources :