Modulation space estimates for Schrödinger type equations with time-dependent potentials
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 539-566 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian $(-\Delta )^{\kappa /2}$ with $1\leq \kappa \leq 2$. Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding propagator are obtained in the framework of modulation spaces. The main results of the present article include the case of wave equations.
We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian $(-\Delta )^{\kappa /2}$ with $1\leq \kappa \leq 2$. Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding propagator are obtained in the framework of modulation spaces. The main results of the present article include the case of wave equations.
DOI : 10.1007/s10587-014-0118-5
Classification : 35Q40, 35Q41, 35R11, 42B35
Keywords: Schrödinger type equation; short-time Fourier transform; modulation space; classical Hamiltonian; complex interpolation
@article{10_1007_s10587_014_0118_5,
     author = {Wei, Wei},
     title = {Modulation space estimates for {Schr\"odinger} type equations with time-dependent potentials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {539--566},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0118-5},
     mrnumber = {3277753},
     zbl = {06391511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0118-5/}
}
TY  - JOUR
AU  - Wei, Wei
TI  - Modulation space estimates for Schrödinger type equations with time-dependent potentials
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 539
EP  - 566
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0118-5/
DO  - 10.1007/s10587-014-0118-5
LA  - en
ID  - 10_1007_s10587_014_0118_5
ER  - 
%0 Journal Article
%A Wei, Wei
%T Modulation space estimates for Schrödinger type equations with time-dependent potentials
%J Czechoslovak Mathematical Journal
%D 2014
%P 539-566
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0118-5/
%R 10.1007/s10587-014-0118-5
%G en
%F 10_1007_s10587_014_0118_5
Wei, Wei. Modulation space estimates for Schrödinger type equations with time-dependent potentials. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 539-566. doi: 10.1007/s10587-014-0118-5

[1] Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246 (2007), 366-384. | DOI | MR | Zbl

[2] Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. Partial Differ. Equations 3 (1978), 979-1005. | DOI | MR | Zbl

[3] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Wavelets and Their Applications, Proc. Internat. Conf., Chennai, India M. Krishna, R. Radha, S. Thangavelu Allied Publishers, New Delhi (2003), 99-140 Updated version of a technical report, University of Vienna, 1983.

[4] Feichtinger, H. G.: Banach spaces of distributions of Wiener's type and interpolation. Functional Analysis and Approximation, Proc. Conf., Oberwolfach 1980 Internat. Ser. Numer. Math. 60 Birkhäuser, Basel (1981), 153-165. | MR

[5] Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2001). | MR | Zbl

[6] Hörmander, L.: Estimates for translation invariant operators in $L^{p}$-spaces. Acta Math. 104 (1960), 93-140. | DOI | MR | Zbl

[7] Kato, K., Kobayashi, M., Ito, S.: Representation of Schrödinger operator of a free particle via short-time Fourier transform and its applications. Tohoku Math. J. (2) 64 (2012), 223-231. | DOI | MR | Zbl

[8] Kato, K., Kobayashi, M., Ito, S.: Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator. SUT J. Math. 47 (2011), 175-183. | MR | Zbl

[9] Kato, K., Kobayashi, M., Ito, S.: Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials. J. Funct. Anal. 266 (2014), 733-753. | DOI | MR | Zbl

[10] Kitada, H.: Scattering theory for the fractional power of negative Laplacian. J. Abstr. Differ. Equ. Appl. 1 (2010), 1-26. | MR | Zbl

[11] Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36-73. | DOI | MR | Zbl

Cité par Sources :