A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 519-537
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We compare the forcing-related properties of a complete Boolean algebra ${\mathbb B}$ with the properties of the convergences $\lambda _{\mathrm s}$ (the algebraic convergence) and $\lambda _{\mathrm {ls}}$ on ${\mathbb B}$ generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that $\lambda _{\mathrm {ls}}$ is a topological convergence iff forcing by ${\mathbb B}$ does not produce new reals and that $\lambda _{\mathrm {ls}}$ is weakly topological if ${\mathbb B}$ satisfies condition $(\hbar )$ (implied by the ${\mathfrak t}$-cc). On the other hand, if $\lambda _{\mathrm {ls}}$ is a weakly topological convergence, then ${\mathbb B}$ is a $2^{\mathfrak h}$-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement “The convergence $\lambda _{\mathrm {ls}}$ on the collapsing algebra ${\mathbb B}=\mathop {\mathrm {ro}} (^{\omega }\omega _2)$ is weakly topological“ is independent of ZFC.
We compare the forcing-related properties of a complete Boolean algebra ${\mathbb B}$ with the properties of the convergences $\lambda _{\mathrm s}$ (the algebraic convergence) and $\lambda _{\mathrm {ls}}$ on ${\mathbb B}$ generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that $\lambda _{\mathrm {ls}}$ is a topological convergence iff forcing by ${\mathbb B}$ does not produce new reals and that $\lambda _{\mathrm {ls}}$ is weakly topological if ${\mathbb B}$ satisfies condition $(\hbar )$ (implied by the ${\mathfrak t}$-cc). On the other hand, if $\lambda _{\mathrm {ls}}$ is a weakly topological convergence, then ${\mathbb B}$ is a $2^{\mathfrak h}$-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement “The convergence $\lambda _{\mathrm {ls}}$ on the collapsing algebra ${\mathbb B}=\mathop {\mathrm {ro}} (^{\omega }\omega _2)$ is weakly topological“ is independent of ZFC.
DOI : 10.1007/s10587-014-0117-6
Classification : 03E17, 03E40, 06E10, 54A20, 54D55
Keywords: complete Boolean algebra; convergence structure; algebraic convergence; forcing; Cantor cube; Aleksandrov cube; small cardinal
@article{10_1007_s10587_014_0117_6,
     author = {Kurili\'c, Milo\v{s} S. and Pavlovi\'c, Aleksandar},
     title = {A convergence on {Boolean} algebras generalizing the convergence on the {Aleksandrov} cube},
     journal = {Czechoslovak Mathematical Journal},
     pages = {519--537},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0117-6},
     mrnumber = {3277752},
     zbl = {06391510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/}
}
TY  - JOUR
AU  - Kurilić, Miloš S.
AU  - Pavlović, Aleksandar
TI  - A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 519
EP  - 537
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/
DO  - 10.1007/s10587-014-0117-6
LA  - en
ID  - 10_1007_s10587_014_0117_6
ER  - 
%0 Journal Article
%A Kurilić, Miloš S.
%A Pavlović, Aleksandar
%T A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
%J Czechoslovak Mathematical Journal
%D 2014
%P 519-537
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/
%R 10.1007/s10587-014-0117-6
%G en
%F 10_1007_s10587_014_0117_6
Kurilić, Miloš S.; Pavlović, Aleksandar. A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 519-537. doi: 10.1007/s10587-014-0117-6

[1] Balcar, B., Główczyński, W., Jech, T.: The sequential topology on complete Boolean algebras. Fundam. Math. 155 (1998), 59-78. | MR | Zbl

[2] Balcar, B., Jech, T., Pazák, T.: Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann. Bull. Lond. Math. Soc. 37 (2005), 885-898. | DOI | MR | Zbl

[3] Balcar, B., Jech, T.: Weak distributivity, a problem of von Neumann and the mystery of measurability. Bull. Symb. Log. 12 (2006), 241-266. | DOI | MR | Zbl

[4] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on $N$ covered by nowhere dense sets. Fundam. Math. 110 (1980), 11-24. | DOI | MR | Zbl

[5] Engelking, R.: General Topology. Translated from the Polish. Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). | MR

[6] Farah, I.: Examples of $\varepsilon$-exhaustive pathological submeasures. Fundam. Math. 181 (2004), 257-272. | DOI | MR | Zbl

[7] Jech, T.: Set Theory. Perspectives in Mathematical Logic Springer, Berlin (1997). | MR | Zbl

[8] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics 102 North-Holland, Amsterdam (1980). | MR | Zbl

[9] Kurilić, M. S., Pavlović, A.: A posteriori convergence in complete Boolean algebras with the sequential topology. Ann. Pure Appl. Logic 148 (2007), 49-62. | DOI | MR | Zbl

[10] Kurilić, M. S., Pavlović, A.: Some forcing related convergence structures on complete Boolean algebras. Novi Sad J. Math. 40 (2010), 77-94. | MR | Zbl

[11] Kurilić, M. S., Pavlović, A.: The convergence of the sequences coding the ground model reals. Publ. Math. Debrecen 82 (2013), 277-292. | DOI | MR

[12] Kurilić, M. S., Todorčević, S.: Property $(\hbar)$ and cellularity of complete Boolean algebras. Arch. Math. Logic 48 (2009), 705-718. | DOI | MR | Zbl

[13] Maharam, D.: An algebraic characterization of measure algebras. Ann. Math. (2) 48 (1947), 154-167. | DOI | MR | Zbl

[14] (ed.), R. D. Mauldin: The Scottish Book. Mathematics from the Scottish Café. Birkhäuser, Boston (1981). | MR | Zbl

[15] Talagrand, M.: Maharam's problem. C. R., Math., Acad. Sci. Paris 342 (2006), 501-503. | DOI | MR | Zbl

[16] Talagrand, M.: Maharam's problem. Ann. Math. (2) 168 (2008), 981-1009. | MR | Zbl

[17] Todorcevic, S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures. Fundam. Math. 183 (2004), 169-183. | DOI | MR | Zbl

[18] Douwen, E. K. van: The integers and topology. Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan North-Holland, Amsterdam (1984), 111-167. | MR

[19] Velickovic, B.: ccc forcing and splitting reals. Isr. J. Math. 147 (2005), 209-220. | DOI | MR | Zbl

Cité par Sources :