A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 519-537.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We compare the forcing-related properties of a complete Boolean algebra ${\mathbb B}$ with the properties of the convergences $\lambda _{\mathrm s}$ (the algebraic convergence) and $\lambda _{\mathrm {ls}}$ on ${\mathbb B}$ generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that $\lambda _{\mathrm {ls}}$ is a topological convergence iff forcing by ${\mathbb B}$ does not produce new reals and that $\lambda _{\mathrm {ls}}$ is weakly topological if ${\mathbb B}$ satisfies condition $(\hbar )$ (implied by the ${\mathfrak t}$-cc). On the other hand, if $\lambda _{\mathrm {ls}}$ is a weakly topological convergence, then ${\mathbb B}$ is a $2^{\mathfrak h}$-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement “The convergence $\lambda _{\mathrm {ls}}$ on the collapsing algebra ${\mathbb B}=\mathop {\mathrm {ro}} (^{\omega }\omega _2)$ is weakly topological“ is independent of ZFC.
DOI : 10.1007/s10587-014-0117-6
Classification : 03E17, 03E40, 06E10, 54A20, 54D55
Keywords: complete Boolean algebra; convergence structure; algebraic convergence; forcing; Cantor cube; Aleksandrov cube; small cardinal
@article{10_1007_s10587_014_0117_6,
     author = {Kurili\'c, Milo\v{s} S. and Pavlovi\'c, Aleksandar},
     title = {A convergence on {Boolean} algebras generalizing the convergence on the {Aleksandrov} cube},
     journal = {Czechoslovak Mathematical Journal},
     pages = {519--537},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0117-6},
     mrnumber = {3277752},
     zbl = {06391510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/}
}
TY  - JOUR
AU  - Kurilić, Miloš S.
AU  - Pavlović, Aleksandar
TI  - A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 519
EP  - 537
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/
DO  - 10.1007/s10587-014-0117-6
LA  - en
ID  - 10_1007_s10587_014_0117_6
ER  - 
%0 Journal Article
%A Kurilić, Miloš S.
%A Pavlović, Aleksandar
%T A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
%J Czechoslovak Mathematical Journal
%D 2014
%P 519-537
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/
%R 10.1007/s10587-014-0117-6
%G en
%F 10_1007_s10587_014_0117_6
Kurilić, Miloš S.; Pavlović, Aleksandar. A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 519-537. doi : 10.1007/s10587-014-0117-6. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0117-6/

Cité par Sources :