Idempotent completion of pretriangulated categories
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 477-494
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
DOI : 10.1007/s10587-014-0114-9
Classification : 16B50, 18E05, 18E30, 18E40
Keywords: idempotent completion; pretriangulated category; torsion pair
@article{10_1007_s10587_014_0114_9,
     author = {Liu, Jichun and Sun, Longgang},
     title = {Idempotent completion of pretriangulated categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {477--494},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0114-9},
     mrnumber = {3277749},
     zbl = {06391507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/}
}
TY  - JOUR
AU  - Liu, Jichun
AU  - Sun, Longgang
TI  - Idempotent completion of pretriangulated categories
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 477
EP  - 494
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/
DO  - 10.1007/s10587-014-0114-9
LA  - en
ID  - 10_1007_s10587_014_0114_9
ER  - 
%0 Journal Article
%A Liu, Jichun
%A Sun, Longgang
%T Idempotent completion of pretriangulated categories
%J Czechoslovak Mathematical Journal
%D 2014
%P 477-494
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/
%R 10.1007/s10587-014-0114-9
%G en
%F 10_1007_s10587_014_0114_9
Liu, Jichun; Sun, Longgang. Idempotent completion of pretriangulated categories. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 477-494. doi: 10.1007/s10587-014-0114-9

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. (2nd ed.) Graduate Texts in Mathematicis 13 Springer, New York (1992). | MR | Zbl

[2] Assem, I., Beligiannis, A., Marmaridis, N.: Right triangulated categories with right semiequivalences. Algebras and Modules II I. Reiten et al. CMS Conf. Proc. 24 AMS, Providence 17-37 (1998). | MR

[3] Auslander, M.: Comments on the functor Ext. Topology 8 (1969), 151-166. | DOI | MR | Zbl

[4] Balmer, P., Schlichting, M.: Idempotent completion of triangulated categories. J. Algebra 236 (2001), 819-834. | DOI | MR | Zbl

[5] Beligiannis, A.: Homotopy theory of modules and Gorenstein rings. Math. Scand. 89 (2001), 5-45. | DOI | MR | Zbl

[6] Beligiannis, A., Marmaridis, N.: Left triangulated categories arising from contravariantly finite subcategories. Commun. Algebra 22 (1994), 5021-5036. | DOI | MR | Zbl

[7] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188 (2007). | MR | Zbl

[8] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | Zbl

[9] Dickson, S. E.: A torsion theory for Abelian categories. Trans. Am. Math. Soc. 121 (1966), 223-235. | DOI | MR | Zbl

[10] Hartshorne, R.: Coherent functors. Adv. Math. 140 (1998), 44-94. | DOI | MR | Zbl

[11] Karoubi, M.: Algèbres de Clifford et K-théorie. French Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270. | DOI | MR | Zbl

[12] Kashiwara, M., Schapira, P.: Categories and Sheaves. Grundlehren der Mathematischen Wissenschaften 332 Springer, Berlin (2006). | MR | Zbl

[13] Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258 (2008), 143-160. | DOI | MR | Zbl

[14] Miličić, D.: Lecture on Derived Categories. www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.

[15] Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. French Astérisque 239 Société Mathématique de France, Paris (1996). | MR | Zbl

Cité par Sources :