Keywords: idempotent completion; pretriangulated category; torsion pair
@article{10_1007_s10587_014_0114_9,
author = {Liu, Jichun and Sun, Longgang},
title = {Idempotent completion of pretriangulated categories},
journal = {Czechoslovak Mathematical Journal},
pages = {477--494},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0114-9},
mrnumber = {3277749},
zbl = {06391507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/}
}
TY - JOUR AU - Liu, Jichun AU - Sun, Longgang TI - Idempotent completion of pretriangulated categories JO - Czechoslovak Mathematical Journal PY - 2014 SP - 477 EP - 494 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/ DO - 10.1007/s10587-014-0114-9 LA - en ID - 10_1007_s10587_014_0114_9 ER -
%0 Journal Article %A Liu, Jichun %A Sun, Longgang %T Idempotent completion of pretriangulated categories %J Czechoslovak Mathematical Journal %D 2014 %P 477-494 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/ %R 10.1007/s10587-014-0114-9 %G en %F 10_1007_s10587_014_0114_9
Liu, Jichun; Sun, Longgang. Idempotent completion of pretriangulated categories. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 477-494. doi: 10.1007/s10587-014-0114-9
[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. (2nd ed.) Graduate Texts in Mathematicis 13 Springer, New York (1992). | MR | Zbl
[2] Assem, I., Beligiannis, A., Marmaridis, N.: Right triangulated categories with right semiequivalences. Algebras and Modules II I. Reiten et al. CMS Conf. Proc. 24 AMS, Providence 17-37 (1998). | MR
[3] Auslander, M.: Comments on the functor Ext. Topology 8 (1969), 151-166. | DOI | MR | Zbl
[4] Balmer, P., Schlichting, M.: Idempotent completion of triangulated categories. J. Algebra 236 (2001), 819-834. | DOI | MR | Zbl
[5] Beligiannis, A.: Homotopy theory of modules and Gorenstein rings. Math. Scand. 89 (2001), 5-45. | DOI | MR | Zbl
[6] Beligiannis, A., Marmaridis, N.: Left triangulated categories arising from contravariantly finite subcategories. Commun. Algebra 22 (1994), 5021-5036. | DOI | MR | Zbl
[7] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188 (2007). | MR | Zbl
[8] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | Zbl
[9] Dickson, S. E.: A torsion theory for Abelian categories. Trans. Am. Math. Soc. 121 (1966), 223-235. | DOI | MR | Zbl
[10] Hartshorne, R.: Coherent functors. Adv. Math. 140 (1998), 44-94. | DOI | MR | Zbl
[11] Karoubi, M.: Algèbres de Clifford et K-théorie. French Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270. | DOI | MR | Zbl
[12] Kashiwara, M., Schapira, P.: Categories and Sheaves. Grundlehren der Mathematischen Wissenschaften 332 Springer, Berlin (2006). | MR | Zbl
[13] Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258 (2008), 143-160. | DOI | MR | Zbl
[14] Miličić, D.: Lecture on Derived Categories. www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.
[15] Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. French Astérisque 239 Société Mathématique de France, Paris (1996). | MR | Zbl
Cité par Sources :