Idempotent completion of pretriangulated categories
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 477-494
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
DOI :
10.1007/s10587-014-0114-9
Classification :
16B50, 18E05, 18E30, 18E40
Keywords: idempotent completion; pretriangulated category; torsion pair
Keywords: idempotent completion; pretriangulated category; torsion pair
@article{10_1007_s10587_014_0114_9,
author = {Liu, Jichun and Sun, Longgang},
title = {Idempotent completion of pretriangulated categories},
journal = {Czechoslovak Mathematical Journal},
pages = {477--494},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0114-9},
mrnumber = {3277749},
zbl = {06391507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/}
}
TY - JOUR AU - Liu, Jichun AU - Sun, Longgang TI - Idempotent completion of pretriangulated categories JO - Czechoslovak Mathematical Journal PY - 2014 SP - 477 EP - 494 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/ DO - 10.1007/s10587-014-0114-9 LA - en ID - 10_1007_s10587_014_0114_9 ER -
%0 Journal Article %A Liu, Jichun %A Sun, Longgang %T Idempotent completion of pretriangulated categories %J Czechoslovak Mathematical Journal %D 2014 %P 477-494 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0114-9/ %R 10.1007/s10587-014-0114-9 %G en %F 10_1007_s10587_014_0114_9
Liu, Jichun; Sun, Longgang. Idempotent completion of pretriangulated categories. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 477-494. doi: 10.1007/s10587-014-0114-9
Cité par Sources :