Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 465-475
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\neq 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.
It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields $K$ generated by a root $\xi $ of the polynomial $P_t(x)=x^4-tx^3-6x^2+tx+1$, assuming that $t>0$, $t\neq 3$ and $t^2+16$ has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family.
DOI : 10.1007/s10587-014-0113-x
Classification : 11D25, 11R04, 11Y50
Keywords: simplest quartic field; power integral base; monogeneity
@article{10_1007_s10587_014_0113_x,
     author = {Ga\'al, Istv\'an and Petr\'anyi, G\'abor},
     title = {Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {465--475},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0113-x},
     mrnumber = {3277748},
     zbl = {06391506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0113-x/}
}
TY  - JOUR
AU  - Gaál, István
AU  - Petrányi, Gábor
TI  - Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 465
EP  - 475
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0113-x/
DO  - 10.1007/s10587-014-0113-x
LA  - en
ID  - 10_1007_s10587_014_0113_x
ER  - 
%0 Journal Article
%A Gaál, István
%A Petrányi, Gábor
%T Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields
%J Czechoslovak Mathematical Journal
%D 2014
%P 465-475
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0113-x/
%R 10.1007/s10587-014-0113-x
%G en
%F 10_1007_s10587_014_0113_x
Gaál, István; Petrányi, Gábor. Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 465-475. doi: 10.1007/s10587-014-0113-x

[1] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M.: Maple V---language reference manual. Springer, New York (1991). | Zbl

[2] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: KANT V4. J. Symb. Comput. 24 (1997), 267-283. | DOI | MR | Zbl

[3] Gaál, I.: Diophantine Equations and Power Integral Bases. New Computational Methods. Birkhäuser, Boston (2002). | MR | Zbl

[4] Gaál, I., Lettl, G.: A parametric family of quintic Thue equations. II. Monatsh. Math. 131 (2000), 29-35. | DOI | MR | Zbl

[5] Gaál, I., Pethő, A., Pohst, M.: Simultaneous representation of integers by a pair of ternary quadratic forms---with an application to index form equations in quartic number fields. J. Number Theory 57 (1996), 90-104. | DOI | MR | Zbl

[6] Gaál, I., Pohst, M.: Power integral bases in a parametric family of totally real cyclic quintics. Math. Comput. 66 (1997), 1689-1696. | DOI | MR | Zbl

[7] Gras, M. N.: Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb Q$. French Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Année 1977-1978, Fasc. 2 (1978). | MR

[8] Jadrijević, B.: Establishing the minimal index in a parametric family of bicyclic biquadratic fields. Period. Math. Hung. 58 (2009), 155-180. | DOI | MR | Zbl

[9] Jadrijević, B.: Solving index form equations in the two parametric families of biquadratic fields. Math. Commun. 14 (2009), 341-363. | MR

[10] Kim, H. K., Lee, J. H.: Evaluation of the Dedekind zeta function at $s =-1$ of the simplest quartic fields. Trends in Math., New Ser., Inf. Center for Math. Sci., 11 (2009), 63-79.

[11] Lazarus, A. J.: On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121 (1991), 1-13. | DOI | MR | Zbl

[12] Lettl, G., A.Pethő,: Complete solution of a family of quartic Thue equations. Abh. Math. Semin. Univ. Hamb. 65 (1995), 365-383. | DOI | MR

[13] Lettl, G., Pethő, A., Voutier, P.: Simple families of Thue inequalities. Trans. Am. Math. Soc. 351 (1999), 1871-1894. | DOI | MR | Zbl

[14] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30 Academic Press, London (1969). | MR | Zbl

[15] Olajos, P.: Power integral bases in the family of simplest quartic fields. Exp. Math. 14 (2005), 129-132. | DOI | MR | Zbl

[16] Shanks, D.: The simplest cubic fields. Math. Comput. 28 (1974), 1137-1152. | DOI | MR | Zbl

Cité par Sources :