Keywords: simplest quartic field; power integral base; monogeneity
@article{10_1007_s10587_014_0113_x,
author = {Ga\'al, Istv\'an and Petr\'anyi, G\'abor},
title = {Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields},
journal = {Czechoslovak Mathematical Journal},
pages = {465--475},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0113-x},
mrnumber = {3277748},
zbl = {06391506},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0113-x/}
}
TY - JOUR AU - Gaál, István AU - Petrányi, Gábor TI - Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields JO - Czechoslovak Mathematical Journal PY - 2014 SP - 465 EP - 475 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0113-x/ DO - 10.1007/s10587-014-0113-x LA - en ID - 10_1007_s10587_014_0113_x ER -
%0 Journal Article %A Gaál, István %A Petrányi, Gábor %T Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields %J Czechoslovak Mathematical Journal %D 2014 %P 465-475 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0113-x/ %R 10.1007/s10587-014-0113-x %G en %F 10_1007_s10587_014_0113_x
Gaál, István; Petrányi, Gábor. Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 465-475. doi: 10.1007/s10587-014-0113-x
[1] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M.: Maple V---language reference manual. Springer, New York (1991). | Zbl
[2] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: KANT V4. J. Symb. Comput. 24 (1997), 267-283. | DOI | MR | Zbl
[3] Gaál, I.: Diophantine Equations and Power Integral Bases. New Computational Methods. Birkhäuser, Boston (2002). | MR | Zbl
[4] Gaál, I., Lettl, G.: A parametric family of quintic Thue equations. II. Monatsh. Math. 131 (2000), 29-35. | DOI | MR | Zbl
[5] Gaál, I., Pethő, A., Pohst, M.: Simultaneous representation of integers by a pair of ternary quadratic forms---with an application to index form equations in quartic number fields. J. Number Theory 57 (1996), 90-104. | DOI | MR | Zbl
[6] Gaál, I., Pohst, M.: Power integral bases in a parametric family of totally real cyclic quintics. Math. Comput. 66 (1997), 1689-1696. | DOI | MR | Zbl
[7] Gras, M. N.: Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb Q$. French Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Année 1977-1978, Fasc. 2 (1978). | MR
[8] Jadrijević, B.: Establishing the minimal index in a parametric family of bicyclic biquadratic fields. Period. Math. Hung. 58 (2009), 155-180. | DOI | MR | Zbl
[9] Jadrijević, B.: Solving index form equations in the two parametric families of biquadratic fields. Math. Commun. 14 (2009), 341-363. | MR
[10] Kim, H. K., Lee, J. H.: Evaluation of the Dedekind zeta function at $s =-1$ of the simplest quartic fields. Trends in Math., New Ser., Inf. Center for Math. Sci., 11 (2009), 63-79.
[11] Lazarus, A. J.: On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121 (1991), 1-13. | DOI | MR | Zbl
[12] Lettl, G., A.Pethő,: Complete solution of a family of quartic Thue equations. Abh. Math. Semin. Univ. Hamb. 65 (1995), 365-383. | DOI | MR
[13] Lettl, G., Pethő, A., Voutier, P.: Simple families of Thue inequalities. Trans. Am. Math. Soc. 351 (1999), 1871-1894. | DOI | MR | Zbl
[14] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30 Academic Press, London (1969). | MR | Zbl
[15] Olajos, P.: Power integral bases in the family of simplest quartic fields. Exp. Math. 14 (2005), 129-132. | DOI | MR | Zbl
[16] Shanks, D.: The simplest cubic fields. Math. Comput. 28 (1974), 1137-1152. | DOI | MR | Zbl
Cité par Sources :