A characterization of the linear groups $L_{2}(p)$
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 459-464
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group and $\pi _{e}(G)$ be the set of element orders of $G$. Let $k \in \pi _{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set ${\rm nse}(G):=\{m_{k}\colon k \in \pi _{e}(G)\}$. In fact ${\rm nse}(G)$ is the set of sizes of elements with the same order in $G$. In this paper, by ${\rm nse}(G)$ and order, we give a new characterization of finite projective special linear groups $L_{2}(p)$ over a field with $p$ elements, where $p$ is prime. We prove the following theorem: If $G$ is a group such that $|G|=|L_{2}(p)|$ and ${\rm nse}(G)$ consists of $1$, $p^{2}-1$, $p(p+\epsilon )/2$ and some numbers divisible by $2p$, where $p$ is a prime greater than $3$ with $p \equiv 1$ modulo $4$, then $G \cong L_{2}(p)$.
Let $G$ be a finite group and $\pi _{e}(G)$ be the set of element orders of $G$. Let $k \in \pi _{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set ${\rm nse}(G):=\{m_{k}\colon k \in \pi _{e}(G)\}$. In fact ${\rm nse}(G)$ is the set of sizes of elements with the same order in $G$. In this paper, by ${\rm nse}(G)$ and order, we give a new characterization of finite projective special linear groups $L_{2}(p)$ over a field with $p$ elements, where $p$ is prime. We prove the following theorem: If $G$ is a group such that $|G|=|L_{2}(p)|$ and ${\rm nse}(G)$ consists of $1$, $p^{2}-1$, $p(p+\epsilon )/2$ and some numbers divisible by $2p$, where $p$ is a prime greater than $3$ with $p \equiv 1$ modulo $4$, then $G \cong L_{2}(p)$.
DOI : 10.1007/s10587-014-0112-y
Classification : 20D06
Keywords: element order; set of the numbers of elements of the same order; linear group
@article{10_1007_s10587_014_0112_y,
     author = {Khalili Asboei, Alireza and Iranmanesh, Ali},
     title = {A characterization of the linear groups $L_{2}(p)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {459--464},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0112-y},
     mrnumber = {3277747},
     zbl = {06391505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0112-y/}
}
TY  - JOUR
AU  - Khalili Asboei, Alireza
AU  - Iranmanesh, Ali
TI  - A characterization of the linear groups $L_{2}(p)$
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 459
EP  - 464
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0112-y/
DO  - 10.1007/s10587-014-0112-y
LA  - en
ID  - 10_1007_s10587_014_0112_y
ER  - 
%0 Journal Article
%A Khalili Asboei, Alireza
%A Iranmanesh, Ali
%T A characterization of the linear groups $L_{2}(p)$
%J Czechoslovak Mathematical Journal
%D 2014
%P 459-464
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0112-y/
%R 10.1007/s10587-014-0112-y
%G en
%F 10_1007_s10587_014_0112_y
Khalili Asboei, Alireza; Iranmanesh, Ali. A characterization of the linear groups $L_{2}(p)$. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 459-464. doi: 10.1007/s10587-014-0112-y

[1] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_{r}$, where $r$ is prime number. Ann. Math. Inform. 40 (2012), 13-23. | MR | Zbl

[2] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A new characterization of $A_{7}$ and $A_{8}$. in An. Ştiinţ. Univ. ``Ovidius'' Constanţa Ser. Mat 21 (2013),43-50. | MR

[3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A new characterization of sporadic simple groups by nse and order. J. Algebra Appl. 12 (2013), Paper No. 1250158. | DOI | MR

[4] Brauer, R., Reynolds, W. F.: On a problem of E. Artin. Ann. Math. 68 (1958), 713-720. | DOI | MR | Zbl

[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups. Clarendon Press Oxford (1985). | MR | Zbl

[6] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes. Berl. Ber. (1895), German 981-993.

[7] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups. Monatsh. Math. 163 (2011), 39-50. | DOI | MR | Zbl

[8] Mazurov, V. D., Khukhro, E. I., eds.: The Kourovka Notebook. Unsolved Problems in Group Theory. Including archive of solved problems. Institute of Mathematics, Russian Academy of Sciences, Siberian Div. Novosibirsk (2006). | MR

[9] Shao, C., Jiang, Q.: A new characterization of Mathieu groups. Arch. Math., Brno 46 (2010), 13-23. | MR | Zbl

[10] Shao, C., Shi, W., Jiang, Q.: Characterization of simple $K_{4}$-groups. Front. Math. China 3 (2008), 355-370. | DOI | MR | Zbl

[11] Shen, R., Shao, C., Jiang, Q., Shi, W., Mazurov, V.: A new characterization of $A_{5}$. Monatsh. Math. 160 (2010), 337-341. | DOI | MR | Zbl

[12] Shi, W.: A new characterization of the sporadic simple groups. Group Theory. Proceedings of the Singapore group theory conference 1987 K. N. Cheng et al. Walter de Gruyter Berlin (1989), 531-540. | MR | Zbl

[13] Zhang, L., Liu, X.: Characterization of the projective general linear groups $ PGL(2,q)$ by their orders and degree patterns. Int. J. Algebra Comput. 19 (2009), 873-889. | DOI | MR | Zbl

Cité par Sources :