A characterization of the linear groups $L_{2}(p)$
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 459-464
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a finite group and $\pi _{e}(G)$ be the set of element orders of $G$. Let $k \in \pi _{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set ${\rm nse}(G):=\{m_{k}\colon k \in \pi _{e}(G)\}$. In fact ${\rm nse}(G)$ is the set of sizes of elements with the same order in $G$. In this paper, by ${\rm nse}(G)$ and order, we give a new characterization of finite projective special linear groups $L_{2}(p)$ over a field with $p$ elements, where $p$ is prime. We prove the following theorem: If $G$ is a group such that $|G|=|L_{2}(p)|$ and ${\rm nse}(G)$ consists of $1$, $p^{2}-1$, $p(p+\epsilon )/2$ and some numbers divisible by $2p$, where $p$ is a prime greater than $3$ with $p \equiv 1$ modulo $4$, then $G \cong L_{2}(p)$.
DOI :
10.1007/s10587-014-0112-y
Classification :
20D06
Keywords: element order; set of the numbers of elements of the same order; linear group
Keywords: element order; set of the numbers of elements of the same order; linear group
@article{10_1007_s10587_014_0112_y,
author = {Khalili Asboei, Alireza and Iranmanesh, Ali},
title = {A characterization of the linear groups $L_{2}(p)$},
journal = {Czechoslovak Mathematical Journal},
pages = {459--464},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2014},
doi = {10.1007/s10587-014-0112-y},
mrnumber = {3277747},
zbl = {06391505},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0112-y/}
}
TY - JOUR
AU - Khalili Asboei, Alireza
AU - Iranmanesh, Ali
TI - A characterization of the linear groups $L_{2}(p)$
JO - Czechoslovak Mathematical Journal
PY - 2014
SP - 459
EP - 464
VL - 64
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0112-y/
DO - 10.1007/s10587-014-0112-y
LA - en
ID - 10_1007_s10587_014_0112_y
ER -
%0 Journal Article
%A Khalili Asboei, Alireza
%A Iranmanesh, Ali
%T A characterization of the linear groups $L_{2}(p)$
%J Czechoslovak Mathematical Journal
%D 2014
%P 459-464
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0112-y/
%R 10.1007/s10587-014-0112-y
%G en
%F 10_1007_s10587_014_0112_y
Khalili Asboei, Alireza; Iranmanesh, Ali. A characterization of the linear groups $L_{2}(p)$. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 459-464. doi: 10.1007/s10587-014-0112-y
Cité par Sources :