On the $abc$-problem in Weyl-Heisenberg frames
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 447-458
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\{{\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb Z}\}$ is a frame for $L^2({\mathbb R})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.
Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\{{\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb Z}\}$ is a frame for $L^2({\mathbb R})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.
DOI :
10.1007/s10587-014-0111-z
Classification :
42C15, 42C40
Keywords: $abc$-problem; Weyl-Heisenberg frame; Zak transform
Keywords: $abc$-problem; Weyl-Heisenberg frame; Zak transform
@article{10_1007_s10587_014_0111_z,
author = {He, Xinggang and Li, Haixiong},
title = {On the $abc$-problem in {Weyl-Heisenberg} frames},
journal = {Czechoslovak Mathematical Journal},
pages = {447--458},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0111-z},
mrnumber = {3277746},
zbl = {06391504},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/}
}
TY - JOUR AU - He, Xinggang AU - Li, Haixiong TI - On the $abc$-problem in Weyl-Heisenberg frames JO - Czechoslovak Mathematical Journal PY - 2014 SP - 447 EP - 458 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/ DO - 10.1007/s10587-014-0111-z LA - en ID - 10_1007_s10587_014_0111_z ER -
He, Xinggang; Li, Haixiong. On the $abc$-problem in Weyl-Heisenberg frames. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 447-458. doi: 10.1007/s10587-014-0111-z
Cité par Sources :