Keywords: $abc$-problem; Weyl-Heisenberg frame; Zak transform
@article{10_1007_s10587_014_0111_z,
author = {He, Xinggang and Li, Haixiong},
title = {On the $abc$-problem in {Weyl-Heisenberg} frames},
journal = {Czechoslovak Mathematical Journal},
pages = {447--458},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0111-z},
mrnumber = {3277746},
zbl = {06391504},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/}
}
TY - JOUR AU - He, Xinggang AU - Li, Haixiong TI - On the $abc$-problem in Weyl-Heisenberg frames JO - Czechoslovak Mathematical Journal PY - 2014 SP - 447 EP - 458 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/ DO - 10.1007/s10587-014-0111-z LA - en ID - 10_1007_s10587_014_0111_z ER -
He, Xinggang; Li, Haixiong. On the $abc$-problem in Weyl-Heisenberg frames. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 447-458. doi: 10.1007/s10587-014-0111-z
[1] Casazza, P. G.: Modern tools for Weyl-Heisenberg (Gabor) frame theory. Adv. Imag. Elec. Phys. 115 (2000), 1-127.
[2] Casazza, P. G., Kalton, N. J.: Roots of complex polynomials and Weyl-Heisenberg frame sets. Proc. Am. Math. Soc. 130 (2002), 2313-2318. | DOI | MR | Zbl
[3] Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions. Duke Math. J. 162 (2013), 1003-1031. | DOI | MR | Zbl
[4] Gu, Q., Han, D.: When a characteristic function generates a Gabor frame. Appl. Comput. Harmon. Anal. 24 (2008), 290-309. | DOI | MR | Zbl
[5] Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13 (2007), 113-166. | DOI | MR | Zbl
[6] Janssen, A. J. E. M.: Some Weyl-Heisenberg frame bound calculations. Indag. Math., New Ser. 7 (1996), 165-183. | DOI | MR | Zbl
[7] Janssen, A. J. E. M.: Zak transforms with few zeros and the tie. Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel 31-70 (2003). | MR | Zbl
[8] Janssen, A. J. E. M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12 (2002), 259-267. | DOI | MR | Zbl
[9] Lyubarskij, Y. I.: Frames in the Bargmann space of entire functions. Entire and Subharmonic Functions Advances in Soviet Mathematics 11 American Mathematical Society, Providence (1992), 167-180. | MR | Zbl
[10] Seip, K.: Density theorems for sampling and interpolation in the Bargmann-Fock space I. J. Reine Angew. Math. 429 (1992), 91-106. | MR | Zbl
[11] Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space II. J. Reine Angew. Math. 429 (1992), 107-113. | MR | Zbl
Cité par Sources :