On the $abc$-problem in Weyl-Heisenberg frames
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 447-458
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\{{\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb Z}\}$ is a frame for $L^2({\mathbb R})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.
Let $a,b,c>0$. We investigate the characterization problem which asks for a classification of all the triples $(a,b,c)$ such that the Weyl-Heisenberg system $\{{\rm e}^{2\pi {\rm i}mbx} \* \chi _{[na,na+c)}\colon m,n\in {\mathbb Z}\}$ is a frame for $L^2({\mathbb R})$. It turns out that the answer to the problem is quite complicated, see Gu and Han (2008) and Janssen (2003). Using a dilation technique, one can reduce the problem to the case where $b=1$ and only let $a$ and $c$ vary. In this paper, we extend the Zak transform technique and use the Fourier analysis technique to study the problem for the case of $a$ being a rational number. We prove some special cases of values for $c$ and $a$ that do not produce a frame, which expands earlier works.
DOI : 10.1007/s10587-014-0111-z
Classification : 42C15, 42C40
Keywords: $abc$-problem; Weyl-Heisenberg frame; Zak transform
@article{10_1007_s10587_014_0111_z,
     author = {He, Xinggang and Li, Haixiong},
     title = {On the $abc$-problem in {Weyl-Heisenberg} frames},
     journal = {Czechoslovak Mathematical Journal},
     pages = {447--458},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0111-z},
     mrnumber = {3277746},
     zbl = {06391504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/}
}
TY  - JOUR
AU  - He, Xinggang
AU  - Li, Haixiong
TI  - On the $abc$-problem in Weyl-Heisenberg frames
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 447
EP  - 458
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/
DO  - 10.1007/s10587-014-0111-z
LA  - en
ID  - 10_1007_s10587_014_0111_z
ER  - 
%0 Journal Article
%A He, Xinggang
%A Li, Haixiong
%T On the $abc$-problem in Weyl-Heisenberg frames
%J Czechoslovak Mathematical Journal
%D 2014
%P 447-458
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0111-z/
%R 10.1007/s10587-014-0111-z
%G en
%F 10_1007_s10587_014_0111_z
He, Xinggang; Li, Haixiong. On the $abc$-problem in Weyl-Heisenberg frames. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 447-458. doi: 10.1007/s10587-014-0111-z

[1] Casazza, P. G.: Modern tools for Weyl-Heisenberg (Gabor) frame theory. Adv. Imag. Elec. Phys. 115 (2000), 1-127.

[2] Casazza, P. G., Kalton, N. J.: Roots of complex polynomials and Weyl-Heisenberg frame sets. Proc. Am. Math. Soc. 130 (2002), 2313-2318. | DOI | MR | Zbl

[3] Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions. Duke Math. J. 162 (2013), 1003-1031. | DOI | MR | Zbl

[4] Gu, Q., Han, D.: When a characteristic function generates a Gabor frame. Appl. Comput. Harmon. Anal. 24 (2008), 290-309. | DOI | MR | Zbl

[5] Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13 (2007), 113-166. | DOI | MR | Zbl

[6] Janssen, A. J. E. M.: Some Weyl-Heisenberg frame bound calculations. Indag. Math., New Ser. 7 (1996), 165-183. | DOI | MR | Zbl

[7] Janssen, A. J. E. M.: Zak transforms with few zeros and the tie. Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel 31-70 (2003). | MR | Zbl

[8] Janssen, A. J. E. M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12 (2002), 259-267. | DOI | MR | Zbl

[9] Lyubarskij, Y. I.: Frames in the Bargmann space of entire functions. Entire and Subharmonic Functions Advances in Soviet Mathematics 11 American Mathematical Society, Providence (1992), 167-180. | MR | Zbl

[10] Seip, K.: Density theorems for sampling and interpolation in the Bargmann-Fock space I. J. Reine Angew. Math. 429 (1992), 91-106. | MR | Zbl

[11] Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space II. J. Reine Angew. Math. 429 (1992), 107-113. | MR | Zbl

Cité par Sources :