Classifying bicrossed products of two Sweedler's Hopf algebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 419-431.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We continue the study started recently by Agore, Bontea and Militaru in ``Classifying bicrossed products of Hopf algebras'' (2014), by describing and classifying all Hopf algebras $E$ that factorize through two Sweedler's Hopf algebras. Equivalently, we classify all bicrossed products $H_4 \bowtie H_4$. There are three steps in our approach. First, we explicitly describe the set of all matched pairs $(H_4, H_4, \triangleright , \triangleleft )$ by proving that, with the exception of the trivial pair, this set is parameterized by the ground field $k$. Then, for any $\lambda \in k$, we describe by generators and relations the associated bicrossed product, $\mathcal {H}_{16, \lambda }$. This is a $16$-dimensional, pointed, unimodular and non-semisimple Hopf algebra. A Hopf algebra $E$ factorizes through $H_4$ and $H_4$ if and only if $ E \cong H_4 \otimes H_4$ or $E \cong {\mathcal H}_{16, \lambda }$. In the last step we classify these quantum groups by proving that there are only three isomorphism classes represented by: $H_4 \otimes H_4$, ${\mathcal H}_{16, 0}$ and ${\mathcal H}_{16, 1} \cong D(H_4)$, the Drinfel'd double of $H_4$. The automorphism group of these objects is also computed: in particular, we prove that ${\rm Aut}_{\rm Hopf}( D(H_4))$ is isomorphic to a semidirect product of groups, $k^{\times } \rtimes \mathbb {Z}_2$.
DOI : 10.1007/s10587-014-0109-6
Classification : 16S40, 16T05, 16T10
Keywords: bicrossed product of Hopf algebras; Sweedler's Hopf algebra; Drinfel'd double
@article{10_1007_s10587_014_0109_6,
     author = {Bontea, Costel-Gabriel},
     title = {Classifying bicrossed products of two {Sweedler's} {Hopf} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {419--431},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0109-6},
     mrnumber = {3277744},
     zbl = {06391502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/}
}
TY  - JOUR
AU  - Bontea, Costel-Gabriel
TI  - Classifying bicrossed products of two Sweedler's Hopf algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 419
EP  - 431
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/
DO  - 10.1007/s10587-014-0109-6
LA  - en
ID  - 10_1007_s10587_014_0109_6
ER  - 
%0 Journal Article
%A Bontea, Costel-Gabriel
%T Classifying bicrossed products of two Sweedler's Hopf algebras
%J Czechoslovak Mathematical Journal
%D 2014
%P 419-431
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/
%R 10.1007/s10587-014-0109-6
%G en
%F 10_1007_s10587_014_0109_6
Bontea, Costel-Gabriel. Classifying bicrossed products of two Sweedler's Hopf algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 419-431. doi : 10.1007/s10587-014-0109-6. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/

Cité par Sources :