Keywords: bicrossed product of Hopf algebras; Sweedler's Hopf algebra; Drinfel'd double
@article{10_1007_s10587_014_0109_6,
author = {Bontea, Costel-Gabriel},
title = {Classifying bicrossed products of two {Sweedler's} {Hopf} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {419--431},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0109-6},
mrnumber = {3277744},
zbl = {06391502},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/}
}
TY - JOUR AU - Bontea, Costel-Gabriel TI - Classifying bicrossed products of two Sweedler's Hopf algebras JO - Czechoslovak Mathematical Journal PY - 2014 SP - 419 EP - 431 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/ DO - 10.1007/s10587-014-0109-6 LA - en ID - 10_1007_s10587_014_0109_6 ER -
%0 Journal Article %A Bontea, Costel-Gabriel %T Classifying bicrossed products of two Sweedler's Hopf algebras %J Czechoslovak Mathematical Journal %D 2014 %P 419-431 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/ %R 10.1007/s10587-014-0109-6 %G en %F 10_1007_s10587_014_0109_6
Bontea, Costel-Gabriel. Classifying bicrossed products of two Sweedler's Hopf algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 419-431. doi: 10.1007/s10587-014-0109-6
[1] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17 (2014), 227-264. | DOI | MR
[2] Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras. St. Petersbg. Math. J. 7 17-52 (1996), translation from Algebra Anal. 7 22-61 (1995). | MR | Zbl
[3] Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order $p^{3}$. J. Algebra 209 658-691 (1998). | DOI | MR | Zbl
[4] Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154 1-45 (2000). | DOI | MR | Zbl
[5] Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. (2) 171 375-417 (2010). | DOI | MR | Zbl
[6] Caenepeel, S., Dăscălescu, S., Raianu, Ş.: Classifying pointed Hopf algebras of dimension 16. Commun. Algebra 28 541-568 (2000). | DOI | MR | Zbl
[7] Doi, Y., Takeuchi, M.: Quaternion algebras and Hopf crossed products. Commun. Algebra 23 3291-3325 (1995). | DOI | MR | Zbl
[8] García, G. A., Vay, C.: Hopf algebras of dimension 16. Algebr. Represent. Theory 13 383-405 (2010). | DOI | MR | Zbl
[9] Kassel, C.: Quantum Groups, Graduate Texts in Mathematics. Graduate Texts in Mathematics 155 Springer, New York (1995). | MR
[10] Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 17-64 (1990). | DOI | MR | Zbl
[11] Majid, S.: Foundations of Quantum Groups Theory. Cambridge University Press, Cambridge (1995).
[12] Majid, S.: More examples of bicrossproduct and double cross product Hopf algebras. Isr. J. Math. 72 133-148 (1990). | DOI | MR | Zbl
[13] Masuoka, A.: Cleft extensions for a Hopf algebra generated by a nearly primitive element. Commun. Algebra 22 4537-4559 (1994). | DOI | MR | Zbl
[14] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Expanded version of ten authors lectures given at the CBMS Conference on Hopf algebras and their actions on rings, DePaul University in Chicago, USA, 1992. Regional Conference Series in Mathematics 82 AMS, Providence, RI (1993). | MR | Zbl
[15] Radford, D. E.: Minimal quasitriangular Hopf algebras. J. Algebra 157 285-315 (1993). | DOI | MR | Zbl
[16] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9 841-882 (1981). | DOI | MR | Zbl
Cité par Sources :