Classifying bicrossed products of two Sweedler's Hopf algebras
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 419-431
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We continue the study started recently by Agore, Bontea and Militaru in ``Classifying bicrossed products of Hopf algebras'' (2014), by describing and classifying all Hopf algebras $E$ that factorize through two Sweedler's Hopf algebras. Equivalently, we classify all bicrossed products $H_4 \bowtie H_4$. There are three steps in our approach. First, we explicitly describe the set of all matched pairs $(H_4, H_4, \triangleright , \triangleleft )$ by proving that, with the exception of the trivial pair, this set is parameterized by the ground field $k$. Then, for any $\lambda \in k$, we describe by generators and relations the associated bicrossed product, $\mathcal {H}_{16, \lambda }$. This is a $16$-dimensional, pointed, unimodular and non-semisimple Hopf algebra. A Hopf algebra $E$ factorizes through $H_4$ and $H_4$ if and only if $ E \cong H_4 \otimes H_4$ or $E \cong {\mathcal H}_{16, \lambda }$. In the last step we classify these quantum groups by proving that there are only three isomorphism classes represented by: $H_4 \otimes H_4$, ${\mathcal H}_{16, 0}$ and ${\mathcal H}_{16, 1} \cong D(H_4)$, the Drinfel'd double of $H_4$. The automorphism group of these objects is also computed: in particular, we prove that ${\rm Aut}_{\rm Hopf}( D(H_4))$ is isomorphic to a semidirect product of groups, $k^{\times } \rtimes \mathbb {Z}_2$.
DOI :
10.1007/s10587-014-0109-6
Classification :
16S40, 16T05, 16T10
Keywords: bicrossed product of Hopf algebras; Sweedler's Hopf algebra; Drinfel'd double
Keywords: bicrossed product of Hopf algebras; Sweedler's Hopf algebra; Drinfel'd double
@article{10_1007_s10587_014_0109_6,
author = {Bontea, Costel-Gabriel},
title = {Classifying bicrossed products of two {Sweedler's} {Hopf} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {419--431},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2014},
doi = {10.1007/s10587-014-0109-6},
mrnumber = {3277744},
zbl = {06391502},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/}
}
TY - JOUR AU - Bontea, Costel-Gabriel TI - Classifying bicrossed products of two Sweedler's Hopf algebras JO - Czechoslovak Mathematical Journal PY - 2014 SP - 419 EP - 431 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/ DO - 10.1007/s10587-014-0109-6 LA - en ID - 10_1007_s10587_014_0109_6 ER -
%0 Journal Article %A Bontea, Costel-Gabriel %T Classifying bicrossed products of two Sweedler's Hopf algebras %J Czechoslovak Mathematical Journal %D 2014 %P 419-431 %V 64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0109-6/ %R 10.1007/s10587-014-0109-6 %G en %F 10_1007_s10587_014_0109_6
Bontea, Costel-Gabriel. Classifying bicrossed products of two Sweedler's Hopf algebras. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 419-431. doi: 10.1007/s10587-014-0109-6
Cité par Sources :