The weak McShane integral
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 387-418 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a $\sigma $-finite outer regular quasi Radon measure space $(S,\Sigma ,\mathcal {T},\mu )$ into a Banach space $X$ and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function $f$ from $S$ into $X$ is weakly McShane integrable on each measurable subset of $S$ if and only if it is Pettis and weakly McShane integrable on $S$. On the other hand, we prove that if an $X$-valued function is weakly McShane integrable on $S$, then it is Pettis integrable on each member of an increasing sequence $(S_\ell )_{\ell \geq 1}$ of measurable sets of finite measure with union $S$. For weakly sequentially complete spaces or for spaces that do not contain a copy of $c_0$, a weakly McShane integrable function on $S$ is always Pettis integrable. A class of functions that are weakly McShane integrable on $S$ but not Pettis integrable is included.
We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a $\sigma $-finite outer regular quasi Radon measure space $(S,\Sigma ,\mathcal {T},\mu )$ into a Banach space $X$ and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function $f$ from $S$ into $X$ is weakly McShane integrable on each measurable subset of $S$ if and only if it is Pettis and weakly McShane integrable on $S$. On the other hand, we prove that if an $X$-valued function is weakly McShane integrable on $S$, then it is Pettis integrable on each member of an increasing sequence $(S_\ell )_{\ell \geq 1}$ of measurable sets of finite measure with union $S$. For weakly sequentially complete spaces or for spaces that do not contain a copy of $c_0$, a weakly McShane integrable function on $S$ is always Pettis integrable. A class of functions that are weakly McShane integrable on $S$ but not Pettis integrable is included.
DOI : 10.1007/s10587-014-0108-7
Classification : 26A39, 26E20, 28B05, 46G10
Keywords: Pettis integral; McShane integral; weak McShane integral; uniform integrability
@article{10_1007_s10587_014_0108_7,
     author = {Saadoune, Mohammed and Sayyad, Redouane},
     title = {The weak {McShane} integral},
     journal = {Czechoslovak Mathematical Journal},
     pages = {387--418},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0108-7},
     mrnumber = {3277743},
     zbl = {06391501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/}
}
TY  - JOUR
AU  - Saadoune, Mohammed
AU  - Sayyad, Redouane
TI  - The weak McShane integral
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 387
EP  - 418
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/
DO  - 10.1007/s10587-014-0108-7
LA  - en
ID  - 10_1007_s10587_014_0108_7
ER  - 
%0 Journal Article
%A Saadoune, Mohammed
%A Sayyad, Redouane
%T The weak McShane integral
%J Czechoslovak Mathematical Journal
%D 2014
%P 387-418
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/
%R 10.1007/s10587-014-0108-7
%G en
%F 10_1007_s10587_014_0108_7
Saadoune, Mohammed; Sayyad, Redouane. The weak McShane integral. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 387-418. doi: 10.1007/s10587-014-0108-7

[1] Aizpuru, A., Pérez-Fernández, F. J.: Characterizations of series in Banach spaces. Acta Math. Univ. Comen., New Ser. 68 (1999), 337-344. | MR | Zbl

[2] Castaing, C.: Weak compactness and convergence in Bochner and Pettis integration. Vietnam J. Math. 24 (1996), 241-286. | MR

[3] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285-306. | DOI | MR

[4] Diestel, J., Jr., J. J. Uhl: Vector Measures. Mathematical Surveys 15 AMS, Providence, R.I. (1977). | MR | Zbl

[5] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill. J. Math. 47 (2003), 1177-1187. | DOI | MR

[6] Fabian, M., Godefroy, G., Hájek, P., Zizler, V.: Hilbert-generated spaces. J. Funct. Anal. 200 (2003), 301-323. | DOI | MR | Zbl

[7] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | Zbl

[8] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations Corrected second printing of the 2001 original Torres Fremlin, Colchester (2003). | MR

[9] Fremlin, D. H.: Measure theory. Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original Torres Fremlin, Colchester (2006). | MR | Zbl

[10] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions. Ill. J. Math. 38 (1994), 127-147. | DOI | MR | Zbl

[11] Geitz, R. F.: Pettis integration. Proc. Am. Math. Soc. 82 (1981), 81-86. | DOI | MR | Zbl

[12] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. | DOI | MR | Zbl

[13] Musiał\kern.5pt, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Math. Fis. Univ. Modena 35 (1987), 159-165. | MR

[14] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces. J. Math. Anal. Appl. 341 (2008), 80-90. | DOI | MR | Zbl

[15] Saadoune, M., Sayyad, R.: From scalar McShane integrability to Pettis integrability. Real Anal. Exchange 38 (2012-2013), 445-466. | MR

[16] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10 World Scientific, Hackensack (2005). | MR | Zbl

[17] Ye, G., Schwabik, Š.: The McShane and the weak McShane integrals of Banach space-valued functions defined on $\Bbb R^m$. Math. Notes, Miskolc 2 (2001), 127-136. | DOI | MR | Zbl

Cité par Sources :