Keywords: Pettis integral; McShane integral; weak McShane integral; uniform integrability
@article{10_1007_s10587_014_0108_7,
author = {Saadoune, Mohammed and Sayyad, Redouane},
title = {The weak {McShane} integral},
journal = {Czechoslovak Mathematical Journal},
pages = {387--418},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0108-7},
mrnumber = {3277743},
zbl = {06391501},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/}
}
TY - JOUR AU - Saadoune, Mohammed AU - Sayyad, Redouane TI - The weak McShane integral JO - Czechoslovak Mathematical Journal PY - 2014 SP - 387 EP - 418 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/ DO - 10.1007/s10587-014-0108-7 LA - en ID - 10_1007_s10587_014_0108_7 ER -
Saadoune, Mohammed; Sayyad, Redouane. The weak McShane integral. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 387-418. doi: 10.1007/s10587-014-0108-7
[1] Aizpuru, A., Pérez-Fernández, F. J.: Characterizations of series in Banach spaces. Acta Math. Univ. Comen., New Ser. 68 (1999), 337-344. | MR | Zbl
[2] Castaing, C.: Weak compactness and convergence in Bochner and Pettis integration. Vietnam J. Math. 24 (1996), 241-286. | MR
[3] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285-306. | DOI | MR
[4] Diestel, J., Jr., J. J. Uhl: Vector Measures. Mathematical Surveys 15 AMS, Providence, R.I. (1977). | MR | Zbl
[5] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill. J. Math. 47 (2003), 1177-1187. | DOI | MR
[6] Fabian, M., Godefroy, G., Hájek, P., Zizler, V.: Hilbert-generated spaces. J. Funct. Anal. 200 (2003), 301-323. | DOI | MR | Zbl
[7] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | Zbl
[8] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations Corrected second printing of the 2001 original Torres Fremlin, Colchester (2003). | MR
[9] Fremlin, D. H.: Measure theory. Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original Torres Fremlin, Colchester (2006). | MR | Zbl
[10] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions. Ill. J. Math. 38 (1994), 127-147. | DOI | MR | Zbl
[11] Geitz, R. F.: Pettis integration. Proc. Am. Math. Soc. 82 (1981), 81-86. | DOI | MR | Zbl
[12] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. | DOI | MR | Zbl
[13] Musiał\kern.5pt, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Math. Fis. Univ. Modena 35 (1987), 159-165. | MR
[14] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces. J. Math. Anal. Appl. 341 (2008), 80-90. | DOI | MR | Zbl
[15] Saadoune, M., Sayyad, R.: From scalar McShane integrability to Pettis integrability. Real Anal. Exchange 38 (2012-2013), 445-466. | MR
[16] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10 World Scientific, Hackensack (2005). | MR | Zbl
[17] Ye, G., Schwabik, Š.: The McShane and the weak McShane integrals of Banach space-valued functions defined on $\Bbb R^m$. Math. Notes, Miskolc 2 (2001), 127-136. | DOI | MR | Zbl
Cité par Sources :