The weak McShane integral
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 387-418.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a $\sigma $-finite outer regular quasi Radon measure space $(S,\Sigma ,\mathcal {T},\mu )$ into a Banach space $X$ and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function $f$ from $S$ into $X$ is weakly McShane integrable on each measurable subset of $S$ if and only if it is Pettis and weakly McShane integrable on $S$. On the other hand, we prove that if an $X$-valued function is weakly McShane integrable on $S$, then it is Pettis integrable on each member of an increasing sequence $(S_\ell )_{\ell \geq 1}$ of measurable sets of finite measure with union $S$. For weakly sequentially complete spaces or for spaces that do not contain a copy of $c_0$, a weakly McShane integrable function on $S$ is always Pettis integrable. A class of functions that are weakly McShane integrable on $S$ but not Pettis integrable is included.
DOI : 10.1007/s10587-014-0108-7
Classification : 26A39, 26E20, 28B05, 46G10
Keywords: Pettis integral; McShane integral; weak McShane integral; uniform integrability
@article{10_1007_s10587_014_0108_7,
     author = {Saadoune, Mohammed and Sayyad, Redouane},
     title = {The weak {McShane} integral},
     journal = {Czechoslovak Mathematical Journal},
     pages = {387--418},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0108-7},
     mrnumber = {3277743},
     zbl = {06391501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/}
}
TY  - JOUR
AU  - Saadoune, Mohammed
AU  - Sayyad, Redouane
TI  - The weak McShane integral
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 387
EP  - 418
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/
DO  - 10.1007/s10587-014-0108-7
LA  - en
ID  - 10_1007_s10587_014_0108_7
ER  - 
%0 Journal Article
%A Saadoune, Mohammed
%A Sayyad, Redouane
%T The weak McShane integral
%J Czechoslovak Mathematical Journal
%D 2014
%P 387-418
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/
%R 10.1007/s10587-014-0108-7
%G en
%F 10_1007_s10587_014_0108_7
Saadoune, Mohammed; Sayyad, Redouane. The weak McShane integral. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 387-418. doi : 10.1007/s10587-014-0108-7. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0108-7/

Cité par Sources :