Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 365-385 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the boundedness of a large class of sublinear commutator operators $T_{b}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_{p,\varphi }(w)$ with the weight function $w$ belonging to Muckenhoupt's class $A_{p}$ is studied. When $1
In this paper, the boundedness of a large class of sublinear commutator operators $T_{b}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_{p,\varphi }(w)$ with the weight function $w$ belonging to Muckenhoupt's class $A_{p}$ is studied. When $1$ and $b \in {\rm BMO}$, sufficient conditions on the pair $(\varphi _1,\varphi _2)$ which ensure the boundedness of the operator $T_{b}$ from $M_{p,\varphi _1}(w)$ to $M_{p,\varphi _2}(w)$ are found. In all cases the conditions for the boundedness of $T_{b}$ are given in terms of Zygmund-type integral inequalities on $(\varphi _1,\varphi _2)$, which do not require any assumption on monotonicity of $\varphi _1(x,r)$, $\varphi _2(x,r)$ in $r$. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
DOI : 10.1007/s10587-014-0107-8
Classification : 42B20, 42B25, 42B35
Keywords: generalized weighted Morrey space; sublinear operator; commutator; BMO space; maximal operator; Calderón-Zygmund operator
@article{10_1007_s10587_014_0107_8,
     author = {Guliyev, Vagif Sabir and Karaman, Turhan and Mustafayev, Rza Chingiz and \c{S}erbet\c{c}i, Ayhan},
     title = {Commutators of sublinear operators generated by {Calder\'on-Zygmund} operator on generalized weighted {Morrey} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {365--385},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0107-8},
     mrnumber = {3277742},
     zbl = {06391500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/}
}
TY  - JOUR
AU  - Guliyev, Vagif Sabir
AU  - Karaman, Turhan
AU  - Mustafayev, Rza Chingiz
AU  - Şerbetçi, Ayhan
TI  - Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 365
EP  - 385
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/
DO  - 10.1007/s10587-014-0107-8
LA  - en
ID  - 10_1007_s10587_014_0107_8
ER  - 
%0 Journal Article
%A Guliyev, Vagif Sabir
%A Karaman, Turhan
%A Mustafayev, Rza Chingiz
%A Şerbetçi, Ayhan
%T Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 365-385
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/
%R 10.1007/s10587-014-0107-8
%G en
%F 10_1007_s10587_014_0107_8
Guliyev, Vagif Sabir; Karaman, Turhan; Mustafayev, Rza Chingiz; Şerbetçi, Ayhan. Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 365-385. doi: 10.1007/s10587-014-0107-8

[1] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. C.: Boundedness of the fractional maximal operator in local Morrey-type spaces. Complex Var. Elliptic Equ. 55 739-758 (2010). | MR | Zbl

[2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces. J. Comput. Appl. Math. 208 280-301 (2007). | DOI | MR | Zbl

[3] Burenkov, V. I., Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces. Potential Anal. 30 211-249 (2009). | DOI | MR | Zbl

[4] Chiarenza, F., Frasca, M., Longo, P.: Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients. Ric. Mat. 40 149-168 (1991). | MR

[5] Chiarenza, F., Frasca, M., Longo, P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336 841-853 (1993). | MR

[6] Coifman, R. R., Meyer, Y.: Beyond pseudodifferential operators. Asterisque 57 Société Mathématique de France, Paris (1978), French. | MR

[7] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 611-635 (1976). | DOI | MR | Zbl

[8] Fazio, G. Di, Ragusa, M. A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112 241-256 (1993). | DOI | MR | Zbl

[9] Ding, Y., Yang, D., Zhou, Z.: Boundedness of sublinear operators and commutators on $L^{p,\omega}(\mathbb{R}^n)$. Yokohama Math. J. 46 15-27 (1998). | MR

[10] Garcí{a}-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116. Mathematical Notes 104 North-Holland, Amsterdam (1985). | MR

[11] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson/Prentice Hall Upper Saddle River (2004). | MR | Zbl

[12] Guliyev, V. S.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009 Article ID 503948, 20 pages (2009). | MR | Zbl

[13] Guliyev, V. S.: Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications Baku (1996).

[14] Guliyev, V. S.: Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in $\mathbb{R}^n$. Doctoral Degree Dissertation. Mat. Inst. Steklov Moskva (1994), Russian.

[15] Guliyev, V. S., Aliyev, S. S., Karaman, T.: Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces. Abstr. Appl. Anal. 2011 Article ID 356041, 18 pages (2011). | MR | Zbl

[16] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107 285-304 (2010). | DOI | MR | Zbl

[17] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. Proc. Sympos. Pure Math. 10, Chicago, Ill., 1966 American Mathematical Society Providence 138-183 (1967). | MR | Zbl

[18] Karaman, T., Guliyev, V. S., Serbetci, A.: Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) LX f.1, 18 pages (2014). | MR

[19] Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282 219-231 (2009). | DOI | MR | Zbl

[20] Lin, Y.: Strongly singular Calderón-Zygmund operator and commutator on Morrey type spaces. Acta Math. Sin., Engl. Ser. 23 2097-2110 (2007). | DOI | MR | Zbl

[21] Lin, Y., Lu, S.: Strongly singular Calderón-Zygmund operators and their commutators. Jordan Journal of Mathematics and Statistics 1 31-49 (2008). | MR | Zbl

[22] Liu, L.: Weighted weak type estimates for commutators of Littlewood-Paley operator. Jap. J. Math., New Ser. 29 1-13 (2003). | DOI | MR | Zbl

[23] Liu, L., Lu, S.: Weighted weak type inequalities for maximal commutators of BochnerRiesz operator. Hokkaido Math. J. 32 85-99 (2003). | DOI | MR

[24] Liu, Y., Chen, D.: The boundedness of maximal Bochner-Riesz operator and maximal commutator on Morrey type spaces. Anal. Theory. Appl. 24 321-329 (2008). | DOI | MR | Zbl

[25] Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics. World Scientific Publishing Hackensack (2007). | MR | Zbl

[26] Lu, G., Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups. Anal. Math. 28 103-134 (2002). | DOI | MR | Zbl

[27] Miller, N.: Weighted Sobolev spaces and pseudodifferential operators with smooth symbols. Trans. Am. Math. Soc. 269 91-109 (1982). | DOI | MR | Zbl

[28] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis. Proceedings of a conference in Sendai, Japan, 1990 S. Igari Springer Tokyo 183-189 (1991). | MR | Zbl

[29] Jr., C. B. Morrey: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 126-166 (1938). | DOI | MR | Zbl

[30] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform. Stud. Math. 54 221-237 (1976). | DOI | MR | Zbl

[31] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 95-103 (1994). | DOI | MR | Zbl

[32] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces. J. Funct. Anal. 4 71-87 (1969). | DOI | MR

[33] Polidoro, S., Ragusa, M. A.: Hölder regularity for solutions of ultraparabolic equations in divergence form. Potential Anal. 14 341-350 (2001). | DOI | MR | Zbl

[34] Sawano, Y.: Generalized Morrey spaces for non-doubling measures. NoDEA, Nonlinear Differ. Equ. Appl. 15 413-425 (2008). | DOI | MR | Zbl

[35] Shi, X., Sun, Q.: Weighted norm inequalities for Bochner-Riesz operators and singular integral operators. Proc. Am. Math. Soc. 116 665-673 (1992). | DOI | MR | Zbl

[36] Sjölin, P.: Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9 (1971), 65-90. | DOI | MR | Zbl

[37] Soria, F., Weiss, G.: A remark on singular integrals and power weights. Indiana Univ. Math. J. 43 187-204 (1994). | DOI | MR | Zbl

[38] Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series 43. Monographs in Harmonic Analysis III Princeton University Press, Princeton (1993). | MR | Zbl

[39] Stein, E. M.: On the functions of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 88 430-466 (1958). | DOI | MR

[40] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). | MR | Zbl

[41] Taylor, M. E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics 100 Birkhäuser, Boston (1991). | MR | Zbl

[42] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics 123 Academic Press, Orlando (1986). | MR | Zbl

[43] Torchinsky, A., Wang, S.: A note on the Marcinkiewicz integral. Colloq. Math. 60/61 235-243 (1990). | DOI | MR | Zbl

[44] Vargas, A. M.: Weighted weak type $(1,1)$ bounds for rough operators. J. Lond. Math. Soc., II. Ser. 54 297-310 (1996). | DOI | MR | Zbl

Cité par Sources :