Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 365-385.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, the boundedness of a large class of sublinear commutator operators $T_{b}$ generated by a Calderón-Zygmund type operator on a generalized weighted Morrey spaces $M_{p,\varphi }(w)$ with the weight function $w$ belonging to Muckenhoupt's class $A_{p}$ is studied. When $1$ and $b \in {\rm BMO}$, sufficient conditions on the pair $(\varphi _1,\varphi _2)$ which ensure the boundedness of the operator $T_{b}$ from $M_{p,\varphi _1}(w)$ to $M_{p,\varphi _2}(w)$ are found. In all cases the conditions for the boundedness of $T_{b}$ are given in terms of Zygmund-type integral inequalities on $(\varphi _1,\varphi _2)$, which do not require any assumption on monotonicity of $\varphi _1(x,r)$, $\varphi _2(x,r)$ in $r$. Then these results are applied to several particular operators such as the pseudo-differential operators, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
DOI : 10.1007/s10587-014-0107-8
Classification : 42B20, 42B25, 42B35
Keywords: generalized weighted Morrey space; sublinear operator; commutator; BMO space; maximal operator; Calderón-Zygmund operator
@article{10_1007_s10587_014_0107_8,
     author = {Guliyev, Vagif Sabir and Karaman, Turhan and Mustafayev, Rza Chingiz and \c{S}erbet\c{c}i, Ayhan},
     title = {Commutators of sublinear operators generated by {Calder\'on-Zygmund} operator on generalized weighted {Morrey} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {365--385},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0107-8},
     mrnumber = {3277742},
     zbl = {06391500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/}
}
TY  - JOUR
AU  - Guliyev, Vagif Sabir
AU  - Karaman, Turhan
AU  - Mustafayev, Rza Chingiz
AU  - Şerbetçi, Ayhan
TI  - Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 365
EP  - 385
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/
DO  - 10.1007/s10587-014-0107-8
LA  - en
ID  - 10_1007_s10587_014_0107_8
ER  - 
%0 Journal Article
%A Guliyev, Vagif Sabir
%A Karaman, Turhan
%A Mustafayev, Rza Chingiz
%A Şerbetçi, Ayhan
%T Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 365-385
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/
%R 10.1007/s10587-014-0107-8
%G en
%F 10_1007_s10587_014_0107_8
Guliyev, Vagif Sabir; Karaman, Turhan; Mustafayev, Rza Chingiz; Şerbetçi, Ayhan. Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 365-385. doi : 10.1007/s10587-014-0107-8. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0107-8/

Cité par Sources :