Keywords: Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate
@article{10_1007_s10587_014_0106_9,
author = {Chaabane, Slim and Feki, Imed},
title = {Pointwise inequalities of logarithmic type in {Hardy-H\"older} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {351--363},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0106-9},
mrnumber = {3277741},
zbl = {06391499},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0106-9/}
}
TY - JOUR AU - Chaabane, Slim AU - Feki, Imed TI - Pointwise inequalities of logarithmic type in Hardy-Hölder spaces JO - Czechoslovak Mathematical Journal PY - 2014 SP - 351 EP - 363 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0106-9/ DO - 10.1007/s10587-014-0106-9 LA - en ID - 10_1007_s10587_014_0106_9 ER -
%0 Journal Article %A Chaabane, Slim %A Feki, Imed %T Pointwise inequalities of logarithmic type in Hardy-Hölder spaces %J Czechoslovak Mathematical Journal %D 2014 %P 351-363 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0106-9/ %R 10.1007/s10587-014-0106-9 %G en %F 10_1007_s10587_014_0106_9
Chaabane, Slim; Feki, Imed. Pointwise inequalities of logarithmic type in Hardy-Hölder spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 351-363. doi: 10.1007/s10587-014-0106-9
[1] Baratchart, L., Leblond, J.: Harmonic identification and Hardy class trace on an arc of the circle. Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. | MR | Zbl
[2] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle. Constr. Approx. 12 (1996), 423-435. | MR
[3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math 46 (1993), 255-269. | DOI | MR
[4] Brézis, H.: Functional Analysis. Theory and Applications. Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. | MR
[5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. | DOI | MR
[6] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. | MR | Zbl
[7] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem. Inverse Probl. 20 (2004), 1083-1097. | MR
[8] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements. Inverse Probl. 15 (1999), 1425-1438. | MR | Zbl
[9] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes. J. Inverse Ill-Posed Probl. 11 (2003), 33-57. | DOI | MR | Zbl
[10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. | MR | Zbl
[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. | MR
[12] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics 38 Academic Press, New York (1970). | MR
[13] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result. Czech. Math. J. 63 (2013), 481-495. | DOI | MR | Zbl
[14] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results. J. Math. Anal. Appl. 395 (2012), 366-375. | DOI | MR | Zbl
[15] Gagliardo, E.: Proprietà di alcune classi di funzioni più variabili. Ricerche Mat. 7 (1958), 102-137 Italian. | MR
[16] Hardy, G. H., Landau, E., Littlewood, J. E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions. Math. Z. 39 (1935), 677-695. | DOI | MR | Zbl
[17] Kwong, M. K., Zettl, A.: Norm Inequalities for Derivatives and Differences. Lecture Notes in Mathematics 1536 Springer, Berlin (1992). | DOI | MR | Zbl
[18] Leblond, L., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. | DOI | MR | Zbl
[19] Marangunić, L. J., Pečarić, J.: On Landau type inequalities for functions with Hölder continuous derivatives. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. | MR | Zbl
[20] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. | DOI | MR | Zbl
[21] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). | MR | Zbl
[22] Niculescu, C. P., Buşe, C.: The Hardy-Landau-Littlewood inequalities with less smoothness. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. | MR | Zbl
[23] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. | MR | Zbl
[24] Rudin, W.: Analytic functions of class $H^p$. Trans. Am. Math. Soc. 78 (1955), 46-66. | MR
[25] Sarason, D.: The $H^p$ Spaces of An Annulus. Memoirs of the American Mathematical Society 56 AMS, Providence (1965). | MR
[26] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Aust. Math. Soc. 27 (1983), 91-105. | DOI | MR | Zbl
Cité par Sources :