Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 351-363 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
We prove some optimal logarithmic estimates in the Hardy space ${H}^{\infty }(G)$ with Hölder regularity, where $G$ is the open unit disk or an annular domain of $\mathbb {C}$. These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space $H^{k,\infty }$ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
DOI : 10.1007/s10587-014-0106-9
Classification : 30C40, 30H05, 30H10
Keywords: Hardy-Sobolev space; Hardy-Landau-Littlewood inequality; Hölder regularity; Cauchy problem; inverse problem; logarithmic estimate
@article{10_1007_s10587_014_0106_9,
     author = {Chaabane, Slim and Feki, Imed},
     title = {Pointwise inequalities of logarithmic type in {Hardy-H\"older} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {351--363},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0106-9},
     mrnumber = {3277741},
     zbl = {06391499},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0106-9/}
}
TY  - JOUR
AU  - Chaabane, Slim
AU  - Feki, Imed
TI  - Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 351
EP  - 363
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0106-9/
DO  - 10.1007/s10587-014-0106-9
LA  - en
ID  - 10_1007_s10587_014_0106_9
ER  - 
%0 Journal Article
%A Chaabane, Slim
%A Feki, Imed
%T Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 351-363
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0106-9/
%R 10.1007/s10587-014-0106-9
%G en
%F 10_1007_s10587_014_0106_9
Chaabane, Slim; Feki, Imed. Pointwise inequalities of logarithmic type in Hardy-Hölder spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 351-363. doi: 10.1007/s10587-014-0106-9

[1] Baratchart, L., Leblond, J.: Harmonic identification and Hardy class trace on an arc of the circle. Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. | MR | Zbl

[2] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle. Constr. Approx. 12 (1996), 423-435. | MR

[3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math 46 (1993), 255-269. | DOI | MR

[4] Brézis, H.: Functional Analysis. Theory and Applications. Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. | MR

[5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. | DOI | MR

[6] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. | MR | Zbl

[7] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem. Inverse Probl. 20 (2004), 1083-1097. | MR

[8] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements. Inverse Probl. 15 (1999), 1425-1438. | MR | Zbl

[9] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes. J. Inverse Ill-Posed Probl. 11 (2003), 33-57. | DOI | MR | Zbl

[10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. | MR | Zbl

[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. | MR

[12] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics 38 Academic Press, New York (1970). | MR

[13] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result. Czech. Math. J. 63 (2013), 481-495. | DOI | MR | Zbl

[14] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results. J. Math. Anal. Appl. 395 (2012), 366-375. | DOI | MR | Zbl

[15] Gagliardo, E.: Proprietà di alcune classi di funzioni più variabili. Ricerche Mat. 7 (1958), 102-137 Italian. | MR

[16] Hardy, G. H., Landau, E., Littlewood, J. E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions. Math. Z. 39 (1935), 677-695. | DOI | MR | Zbl

[17] Kwong, M. K., Zettl, A.: Norm Inequalities for Derivatives and Differences. Lecture Notes in Mathematics 1536 Springer, Berlin (1992). | DOI | MR | Zbl

[18] Leblond, L., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. | DOI | MR | Zbl

[19] Marangunić, L. J., Pečarić, J.: On Landau type inequalities for functions with Hölder continuous derivatives. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. | MR | Zbl

[20] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. | DOI | MR | Zbl

[21] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). | MR | Zbl

[22] Niculescu, C. P., Buşe, C.: The Hardy-Landau-Littlewood inequalities with less smoothness. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. | MR | Zbl

[23] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. | MR | Zbl

[24] Rudin, W.: Analytic functions of class $H^p$. Trans. Am. Math. Soc. 78 (1955), 46-66. | MR

[25] Sarason, D.: The $H^p$ Spaces of An Annulus. Memoirs of the American Mathematical Society 56 AMS, Providence (1965). | MR

[26] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Aust. Math. Soc. 27 (1983), 91-105. | DOI | MR | Zbl

Cité par Sources :