The group of commutativity preserving maps on strictly upper triangular matrices
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 335-350
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal {N}=N_n(R)$ be the algebra of all $n\times n$ strictly upper triangular matrices over a unital commutative ring $R$. A map $\varphi $ on $\mathcal {N}$ is called preserving commutativity in both directions if $xy=yx\Leftrightarrow \varphi (x)\varphi (y)=\varphi (y)\varphi (x)$. In this paper, we prove that each invertible linear map on $\mathcal {N}$ preserving commutativity in both directions is exactly a quasi-automorphism of $\mathcal {N}$, and a quasi-automorphism of $\mathcal {N}$ can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.
Let $\mathcal {N}=N_n(R)$ be the algebra of all $n\times n$ strictly upper triangular matrices over a unital commutative ring $R$. A map $\varphi $ on $\mathcal {N}$ is called preserving commutativity in both directions if $xy=yx\Leftrightarrow \varphi (x)\varphi (y)=\varphi (y)\varphi (x)$. In this paper, we prove that each invertible linear map on $\mathcal {N}$ preserving commutativity in both directions is exactly a quasi-automorphism of $\mathcal {N}$, and a quasi-automorphism of $\mathcal {N}$ can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.
DOI :
10.1007/s10587-014-0105-x
Classification :
13C10, 15A04, 15A27, 15A99, 17C30
Keywords: commutativity preserving map; automorphism; commutative ring
Keywords: commutativity preserving map; automorphism; commutative ring
@article{10_1007_s10587_014_0105_x,
author = {Wang, Dengyin and Zhu, Min and Rou, Jianling},
title = {The group of commutativity preserving maps on strictly upper triangular matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {335--350},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0105-x},
mrnumber = {3277740},
zbl = {06391498},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0105-x/}
}
TY - JOUR AU - Wang, Dengyin AU - Zhu, Min AU - Rou, Jianling TI - The group of commutativity preserving maps on strictly upper triangular matrices JO - Czechoslovak Mathematical Journal PY - 2014 SP - 335 EP - 350 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0105-x/ DO - 10.1007/s10587-014-0105-x LA - en ID - 10_1007_s10587_014_0105_x ER -
%0 Journal Article %A Wang, Dengyin %A Zhu, Min %A Rou, Jianling %T The group of commutativity preserving maps on strictly upper triangular matrices %J Czechoslovak Mathematical Journal %D 2014 %P 335-350 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0105-x/ %R 10.1007/s10587-014-0105-x %G en %F 10_1007_s10587_014_0105_x
Wang, Dengyin; Zhu, Min; Rou, Jianling. The group of commutativity preserving maps on strictly upper triangular matrices. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 335-350. doi: 10.1007/s10587-014-0105-x
Cité par Sources :