Keywords: local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes
@article{10_1007_s10587_014_0104_y,
author = {Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar and Hassanzadeh-Lelekaami, Dawood},
title = {Some results on the local cohomology of minimax modules},
journal = {Czechoslovak Mathematical Journal},
pages = {327--333},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0104-y},
mrnumber = {3277739},
zbl = {06391497},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/}
}
TY - JOUR AU - Abbasi, Ahmad AU - Roshan-Shekalgourabi, Hajar AU - Hassanzadeh-Lelekaami, Dawood TI - Some results on the local cohomology of minimax modules JO - Czechoslovak Mathematical Journal PY - 2014 SP - 327 EP - 333 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/ DO - 10.1007/s10587-014-0104-y LA - en ID - 10_1007_s10587_014_0104_y ER -
%0 Journal Article %A Abbasi, Ahmad %A Roshan-Shekalgourabi, Hajar %A Hassanzadeh-Lelekaami, Dawood %T Some results on the local cohomology of minimax modules %J Czechoslovak Mathematical Journal %D 2014 %P 327-333 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/ %R 10.1007/s10587-014-0104-y %G en %F 10_1007_s10587_014_0104_y
Abbasi, Ahmad; Roshan-Shekalgourabi, Hajar; Hassanzadeh-Lelekaami, Dawood. Some results on the local cohomology of minimax modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 327-333. doi: 10.1007/s10587-014-0104-y
[1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for $\mathfrak a$-minimax modules. Proc. Am. Math. Soc. 137 (2009), 439-448. | DOI | MR
[2] Bahmanpour, K.: On the category of weakly Laskerian cofinite modules. Math. Scand. 115 (2014), 62-68. | DOI | MR
[3] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohohomology modules. Proc. Am. Math. Soc. 136 (2008), 2359-2363. | DOI | MR
[4] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra 321 (2009), 1997-2011. | DOI | MR | Zbl
[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). | MR | Zbl
[6] Chiriacescu, G.: Cofiniteness of local cohomology modules over regular local rings. Bull. Lond. Math. Soc. 32 (2000), 1-7. | DOI | MR | Zbl
[7] Delfino, D.: On the cofiniteness of local cohomology modules. Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. | DOI | MR | Zbl
[8] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1997), 45-52. | DOI | MR | Zbl
[9] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. (electronic) 133 (2005), 655-660. | DOI | MR | Zbl
[10] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules. Commun. Algebra 34 (2006), 681-690. | DOI | MR | Zbl
[11] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 (1984), 179-184. | DOI | MR | Zbl
[12] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | Zbl
[13] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. | DOI | MR | Zbl
[14] Mafi, A.: A generalization of the finiteness problem in local cohomology modules. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. | DOI | MR | Zbl
[15] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. | DOI | MR | Zbl
[16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules. Proc. Am. Math. Soc. 138 (2010), 1965-1968. | DOI | MR | Zbl
[17] Robbins, H. R.: Finiteness of Associated Primes of Local Cohomology Modules. Ph.D. Thesis, University of Michigan (2008). | MR
[18] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. | DOI | MR | Zbl
[19] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring. German Math. Nachr. 64 (1974), 239-252. | DOI | MR | Zbl
[20] Zöschinger, H.: Minimax modules. German J. Algebra 102 (1986), 1-32. | DOI | MR | Zbl
[21] Zöschinger, H.: On the maximality condition for radically full submodules. German Hokkaido Math. J. 17 (1988), 101-116. | MR | Zbl
Cité par Sources :