Some results on the local cohomology of minimax modules
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 327-333
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop {\rm Supp} H^i_I (M) \leq 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\geq 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop {\rm Supp} H^i_I (M)\leq 2$ for all $i
Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop {\rm Supp} H^i_I (M) \leq 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\geq 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop {\rm Supp} H^i_I (M)\leq 2$ for all $i$, then ${\rm Ext}^j_R (R/I, H^i_I (M))$ and ${\rm Hom}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i$ and all $j \geq 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\geq 0$, whenever $\dim R/I \leq 2$ and $M$ is weakly Laskerian.
DOI : 10.1007/s10587-014-0104-y
Classification : 13C05, 13D45, 13E10
Keywords: local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes
@article{10_1007_s10587_014_0104_y,
     author = {Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar and Hassanzadeh-Lelekaami, Dawood},
     title = {Some results on the local cohomology of minimax modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {327--333},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0104-y},
     mrnumber = {3277739},
     zbl = {06391497},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/}
}
TY  - JOUR
AU  - Abbasi, Ahmad
AU  - Roshan-Shekalgourabi, Hajar
AU  - Hassanzadeh-Lelekaami, Dawood
TI  - Some results on the local cohomology of minimax modules
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 327
EP  - 333
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/
DO  - 10.1007/s10587-014-0104-y
LA  - en
ID  - 10_1007_s10587_014_0104_y
ER  - 
%0 Journal Article
%A Abbasi, Ahmad
%A Roshan-Shekalgourabi, Hajar
%A Hassanzadeh-Lelekaami, Dawood
%T Some results on the local cohomology of minimax modules
%J Czechoslovak Mathematical Journal
%D 2014
%P 327-333
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/
%R 10.1007/s10587-014-0104-y
%G en
%F 10_1007_s10587_014_0104_y
Abbasi, Ahmad; Roshan-Shekalgourabi, Hajar; Hassanzadeh-Lelekaami, Dawood. Some results on the local cohomology of minimax modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 327-333. doi: 10.1007/s10587-014-0104-y

[1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for $\mathfrak a$-minimax modules. Proc. Am. Math. Soc. 137 (2009), 439-448. | DOI | MR

[2] Bahmanpour, K.: On the category of weakly Laskerian cofinite modules. Math. Scand. 115 (2014), 62-68. | DOI | MR

[3] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohohomology modules. Proc. Am. Math. Soc. 136 (2008), 2359-2363. | DOI | MR

[4] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra 321 (2009), 1997-2011. | DOI | MR | Zbl

[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). | MR | Zbl

[6] Chiriacescu, G.: Cofiniteness of local cohomology modules over regular local rings. Bull. Lond. Math. Soc. 32 (2000), 1-7. | DOI | MR | Zbl

[7] Delfino, D.: On the cofiniteness of local cohomology modules. Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. | DOI | MR | Zbl

[8] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1997), 45-52. | DOI | MR | Zbl

[9] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. (electronic) 133 (2005), 655-660. | DOI | MR | Zbl

[10] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules. Commun. Algebra 34 (2006), 681-690. | DOI | MR | Zbl

[11] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 (1984), 179-184. | DOI | MR | Zbl

[12] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | Zbl

[13] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. | DOI | MR | Zbl

[14] Mafi, A.: A generalization of the finiteness problem in local cohomology modules. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. | DOI | MR | Zbl

[15] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. | DOI | MR | Zbl

[16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules. Proc. Am. Math. Soc. 138 (2010), 1965-1968. | DOI | MR | Zbl

[17] Robbins, H. R.: Finiteness of Associated Primes of Local Cohomology Modules. Ph.D. Thesis, University of Michigan (2008). | MR

[18] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. | DOI | MR | Zbl

[19] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring. German Math. Nachr. 64 (1974), 239-252. | DOI | MR | Zbl

[20] Zöschinger, H.: Minimax modules. German J. Algebra 102 (1986), 1-32. | DOI | MR | Zbl

[21] Zöschinger, H.: On the maximality condition for radically full submodules. German Hokkaido Math. J. 17 (1988), 101-116. | MR | Zbl

Cité par Sources :