Some results on the local cohomology of minimax modules
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 327-333.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative Noetherian ring with identity and $I$ an ideal of $R$. It is shown that, if $M$ is a non-zero minimax $R$-module such that $\dim \mathop {\rm Supp} H^i_I (M) \leq 1$ for all $i$, then the $R$-module $H^i_I(M)$ is $I$-cominimax for all $i$. In fact, $H^i_I(M)$ is $I$-cofinite for all $i\geq 1$. Also, we prove that for a weakly Laskerian $R$-module $M$, if $R$ is local and $t$ is a non-negative integer such that $\dim \mathop {\rm Supp} H^i_I (M)\leq 2$ for all $i$, then ${\rm Ext}^j_R (R/I, H^i_I (M))$ and ${\rm Hom}_R(R/I, H^t_I(M))$ are weakly Laskerian for all $i$ and all $j \geq 0$. As a consequence, the set of associated primes of $H^i_I (M)$ is finite for all $i\geq 0$, whenever $\dim R/I \leq 2$ and $M$ is weakly Laskerian.
DOI : 10.1007/s10587-014-0104-y
Classification : 13C05, 13D45, 13E10
Keywords: local cohomology module; Krull dimension; minimax module; cofinite module; weakly Laskerian module; associated primes
@article{10_1007_s10587_014_0104_y,
     author = {Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar and Hassanzadeh-Lelekaami, Dawood},
     title = {Some results on the local cohomology of minimax modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {327--333},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0104-y},
     mrnumber = {3277739},
     zbl = {06391497},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/}
}
TY  - JOUR
AU  - Abbasi, Ahmad
AU  - Roshan-Shekalgourabi, Hajar
AU  - Hassanzadeh-Lelekaami, Dawood
TI  - Some results on the local cohomology of minimax modules
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 327
EP  - 333
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/
DO  - 10.1007/s10587-014-0104-y
LA  - en
ID  - 10_1007_s10587_014_0104_y
ER  - 
%0 Journal Article
%A Abbasi, Ahmad
%A Roshan-Shekalgourabi, Hajar
%A Hassanzadeh-Lelekaami, Dawood
%T Some results on the local cohomology of minimax modules
%J Czechoslovak Mathematical Journal
%D 2014
%P 327-333
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/
%R 10.1007/s10587-014-0104-y
%G en
%F 10_1007_s10587_014_0104_y
Abbasi, Ahmad; Roshan-Shekalgourabi, Hajar; Hassanzadeh-Lelekaami, Dawood. Some results on the local cohomology of minimax modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 327-333. doi : 10.1007/s10587-014-0104-y. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0104-y/

Cité par Sources :