On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\geq 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\geq 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
DOI : 10.1007/s10587-014-0103-z
Classification : 05C50, 15A18
Keywords: signless Laplacian spectrum; cospectral graphs; $T$-shape tree
@article{10_1007_s10587_014_0103_z,
     author = {Wang, Guoping and Guo, Guangquan and Min, Li},
     title = {On the signless {Laplacian} spectral characterization of the line graphs of $T$-shape trees},
     journal = {Czechoslovak Mathematical Journal},
     pages = {311--325},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0103-z},
     mrnumber = {3277738},
     zbl = {06391496},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/}
}
TY  - JOUR
AU  - Wang, Guoping
AU  - Guo, Guangquan
AU  - Min, Li
TI  - On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 311
EP  - 325
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/
DO  - 10.1007/s10587-014-0103-z
LA  - en
ID  - 10_1007_s10587_014_0103_z
ER  - 
%0 Journal Article
%A Wang, Guoping
%A Guo, Guangquan
%A Min, Li
%T On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
%J Czechoslovak Mathematical Journal
%D 2014
%P 311-325
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/
%R 10.1007/s10587-014-0103-z
%G en
%F 10_1007_s10587_014_0103_z
Wang, Guoping; Guo, Guangquan; Min, Li. On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325. doi: 10.1007/s10587-014-0103-z

[1] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. 3rd rev. a. enl. J. A. Barth, Leipzig (1995). | MR | Zbl

[2] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR

[3] Cvetković, D., Rowlinson, P., Simić, S. K.: Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math., Nouv. Sér. 81 (2007), 11-27. | DOI | MR | Zbl

[4] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. I. Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. | MR

[5] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. II. Linear Algebra Appl. 432 (2010), 2257-2272. | DOI | MR

[6] Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B.: Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$. Linear Algebra Appl. 420 (2007), 483-489. | MR | Zbl

[7] Omidi, G. R.: On a signless Laplacian spectral characterizaiton of $T$-shape trees. Linear Algebra Appl. 431 (2009), 1607-1615. | DOI | MR

[8] Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B.: A note on the spectral characterization of $\theta$-graphs. Linear Algebra Appl. 431 (2009), 626-632. | MR | Zbl

[9] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. | MR

[10] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs. Discrete Math. 309 (2009), 576-586. | DOI | MR

[11] Wang, J. F., Huang, Q. X., Belardo, F., Marzi, E. M. L.: On the spectral characterizations of $\infty$-graphs. Discrete Math. 310 (2010), 1845-1855. | DOI | MR | Zbl

[12] Wang, W., Xu, C. X.: On the spectral characterization of $T$-shape trees. Linear Algebra Appl. 414 (2006), 492-501. | DOI | MR | Zbl

[13] Wang, W., Xu, C. X.: Note: The $T$-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006), 78-81. | MR

[14] Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R.: The lollipop graph is determined by its $Q$-spectrum. Discrete Math. 309 (2009), 3364-3369. | DOI | MR | Zbl

Cité par Sources :