On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\geq 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
DOI :
10.1007/s10587-014-0103-z
Classification :
05C50, 15A18
Keywords: signless Laplacian spectrum; cospectral graphs; $T$-shape tree
Keywords: signless Laplacian spectrum; cospectral graphs; $T$-shape tree
@article{10_1007_s10587_014_0103_z,
author = {Wang, Guoping and Guo, Guangquan and Min, Li},
title = {On the signless {Laplacian} spectral characterization of the line graphs of $T$-shape trees},
journal = {Czechoslovak Mathematical Journal},
pages = {311--325},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2014},
doi = {10.1007/s10587-014-0103-z},
mrnumber = {3277738},
zbl = {06391496},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/}
}
TY - JOUR AU - Wang, Guoping AU - Guo, Guangquan AU - Min, Li TI - On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees JO - Czechoslovak Mathematical Journal PY - 2014 SP - 311 EP - 325 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/ DO - 10.1007/s10587-014-0103-z LA - en ID - 10_1007_s10587_014_0103_z ER -
%0 Journal Article %A Wang, Guoping %A Guo, Guangquan %A Min, Li %T On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees %J Czechoslovak Mathematical Journal %D 2014 %P 311-325 %V 64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/ %R 10.1007/s10587-014-0103-z %G en %F 10_1007_s10587_014_0103_z
Wang, Guoping; Guo, Guangquan; Min, Li. On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325. doi: 10.1007/s10587-014-0103-z
Cité par Sources :