Keywords: signless Laplacian spectrum; cospectral graphs; $T$-shape tree
@article{10_1007_s10587_014_0103_z,
author = {Wang, Guoping and Guo, Guangquan and Min, Li},
title = {On the signless {Laplacian} spectral characterization of the line graphs of $T$-shape trees},
journal = {Czechoslovak Mathematical Journal},
pages = {311--325},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0103-z},
mrnumber = {3277738},
zbl = {06391496},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/}
}
TY - JOUR AU - Wang, Guoping AU - Guo, Guangquan AU - Min, Li TI - On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees JO - Czechoslovak Mathematical Journal PY - 2014 SP - 311 EP - 325 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/ DO - 10.1007/s10587-014-0103-z LA - en ID - 10_1007_s10587_014_0103_z ER -
%0 Journal Article %A Wang, Guoping %A Guo, Guangquan %A Min, Li %T On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees %J Czechoslovak Mathematical Journal %D 2014 %P 311-325 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/ %R 10.1007/s10587-014-0103-z %G en %F 10_1007_s10587_014_0103_z
Wang, Guoping; Guo, Guangquan; Min, Li. On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325. doi: 10.1007/s10587-014-0103-z
[1] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. 3rd rev. a. enl. J. A. Barth, Leipzig (1995). | MR | Zbl
[2] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR
[3] Cvetković, D., Rowlinson, P., Simić, S. K.: Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math., Nouv. Sér. 81 (2007), 11-27. | DOI | MR | Zbl
[4] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. I. Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. | MR
[5] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. II. Linear Algebra Appl. 432 (2010), 2257-2272. | DOI | MR
[6] Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B.: Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$. Linear Algebra Appl. 420 (2007), 483-489. | MR | Zbl
[7] Omidi, G. R.: On a signless Laplacian spectral characterizaiton of $T$-shape trees. Linear Algebra Appl. 431 (2009), 1607-1615. | DOI | MR
[8] Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B.: A note on the spectral characterization of $\theta$-graphs. Linear Algebra Appl. 431 (2009), 626-632. | MR | Zbl
[9] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. | MR
[10] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs. Discrete Math. 309 (2009), 576-586. | DOI | MR
[11] Wang, J. F., Huang, Q. X., Belardo, F., Marzi, E. M. L.: On the spectral characterizations of $\infty$-graphs. Discrete Math. 310 (2010), 1845-1855. | DOI | MR | Zbl
[12] Wang, W., Xu, C. X.: On the spectral characterization of $T$-shape trees. Linear Algebra Appl. 414 (2006), 492-501. | DOI | MR | Zbl
[13] Wang, W., Xu, C. X.: Note: The $T$-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006), 78-81. | MR
[14] Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R.: The lollipop graph is determined by its $Q$-spectrum. Discrete Math. 309 (2009), 3364-3369. | DOI | MR | Zbl
Cité par Sources :