On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\geq 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
DOI : 10.1007/s10587-014-0103-z
Classification : 05C50, 15A18
Keywords: signless Laplacian spectrum; cospectral graphs; $T$-shape tree
@article{10_1007_s10587_014_0103_z,
     author = {Wang, Guoping and Guo, Guangquan and Min, Li},
     title = {On the signless {Laplacian} spectral characterization of the line graphs of $T$-shape trees},
     journal = {Czechoslovak Mathematical Journal},
     pages = {311--325},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0103-z},
     mrnumber = {3277738},
     zbl = {06391496},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/}
}
TY  - JOUR
AU  - Wang, Guoping
AU  - Guo, Guangquan
AU  - Min, Li
TI  - On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 311
EP  - 325
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/
DO  - 10.1007/s10587-014-0103-z
LA  - en
ID  - 10_1007_s10587_014_0103_z
ER  - 
%0 Journal Article
%A Wang, Guoping
%A Guo, Guangquan
%A Min, Li
%T On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees
%J Czechoslovak Mathematical Journal
%D 2014
%P 311-325
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/
%R 10.1007/s10587-014-0103-z
%G en
%F 10_1007_s10587_014_0103_z
Wang, Guoping; Guo, Guangquan; Min, Li. On the signless Laplacian spectral characterization of the line graphs of $T$-shape trees. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 311-325. doi : 10.1007/s10587-014-0103-z. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0103-z/

Cité par Sources :