Keywords: discrete group; geometric convergence; uniformly bounded torsion
@article{10_1007_s10587_014_0102_0,
author = {Yang, Shihai},
title = {On geometric convergence of discrete groups},
journal = {Czechoslovak Mathematical Journal},
pages = {305--310},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0102-0},
mrnumber = {3277737},
zbl = {06391495},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0102-0/}
}
TY - JOUR AU - Yang, Shihai TI - On geometric convergence of discrete groups JO - Czechoslovak Mathematical Journal PY - 2014 SP - 305 EP - 310 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0102-0/ DO - 10.1007/s10587-014-0102-0 LA - en ID - 10_1007_s10587_014_0102_0 ER -
Yang, Shihai. On geometric convergence of discrete groups. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 305-310. doi: 10.1007/s10587-014-0102-0
[1] Abikoff, W., Haas, A.: Nondiscrete groups of hyperbolic motions. Bull. Lond. Math. Soc. 22 (1990), 233-238. | DOI | MR | Zbl
[2] Belegradek, I.: Intersections in hyperbolic manifolds. Geom. Topol. 2 (1998), 117-144. | DOI | MR | Zbl
[3] Chen, S. S., Greenberg, L.: Hyperbolic spaces. Contributions to Analysis, Collection of Papers Dedicated to Lipman Bers L. V. Ahlfors et al. Academic Press, New York (1974), 49-87. | MR | Zbl
[4] Jørgensen, T., Marden, A.: Algebraic and geometric convergence of Kleinian groups. Math. Scand. 66 (1990), 47-72. | DOI | MR | Zbl
[5] Kapovich, M.: Hyperbolic Manifolds and Discrete Groups. Reprint of the 2001 edition. Modern Birkhäuser Classics Birkhäuser, Boston (2009). | MR
[6] Martin, G. J.: On discrete isometry groups of negative curvature. Pac. J. Math. 160 (1993), 109-127. | DOI | MR | Zbl
[7] Martin, G. J.: On discrete Möbius groups in all dimensions: A generalization of Jørgensen's inequality. Acta Math. 163 (1989), 253-289. | DOI | MR | Zbl
[8] Tukia, P.: Convergence groups and Gromov's metric hyperbolic spaces. N. Z. J. Math. (electronic only) 23 (1994), 157-187. | MR | Zbl
Cité par Sources :