Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10587_014_0101_1, author = {Li, Weiqing and Ouyang, Baiyu}, title = {$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings}, journal = {Czechoslovak Mathematical Journal}, pages = {289--304}, publisher = {mathdoc}, volume = {64}, number = {2}, year = {2014}, doi = {10.1007/s10587-014-0101-1}, mrnumber = {3277736}, zbl = {06391494}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/} }
TY - JOUR AU - Li, Weiqing AU - Ouyang, Baiyu TI - $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings JO - Czechoslovak Mathematical Journal PY - 2014 SP - 289 EP - 304 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/ DO - 10.1007/s10587-014-0101-1 LA - en ID - 10_1007_s10587_014_0101_1 ER -
%0 Journal Article %A Li, Weiqing %A Ouyang, Baiyu %T $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings %J Czechoslovak Mathematical Journal %D 2014 %P 289-304 %V 64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/ %R 10.1007/s10587-014-0101-1 %G en %F 10_1007_s10587_014_0101_1
Li, Weiqing; Ouyang, Baiyu. $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304. doi : 10.1007/s10587-014-0101-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/
Cité par Sources :