$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings.
It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings.
DOI : 10.1007/s10587-014-0101-1
Classification : 16D40, 16D50, 16E40, 16P70, 18G25
Keywords: cover; envelope; $n$-coherent ring; $(n, d)$-injective; $(n, d)$-ring
@article{10_1007_s10587_014_0101_1,
     author = {Li, Weiqing and Ouyang, Baiyu},
     title = {$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {289--304},
     year = {2014},
     volume = {64},
     number = {2},
     doi = {10.1007/s10587-014-0101-1},
     mrnumber = {3277736},
     zbl = {06391494},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/}
}
TY  - JOUR
AU  - Li, Weiqing
AU  - Ouyang, Baiyu
TI  - $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 289
EP  - 304
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/
DO  - 10.1007/s10587-014-0101-1
LA  - en
ID  - 10_1007_s10587_014_0101_1
ER  - 
%0 Journal Article
%A Li, Weiqing
%A Ouyang, Baiyu
%T $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
%J Czechoslovak Mathematical Journal
%D 2014
%P 289-304
%V 64
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/
%R 10.1007/s10587-014-0101-1
%G en
%F 10_1007_s10587_014_0101_1
Li, Weiqing; Ouyang, Baiyu. $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304. doi: 10.1007/s10587-014-0101-1

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. (2nd ed.). Graduate Texts in Mathematics 13 Springer, New York (1992). | MR | Zbl

[2] Bican, L., Bashir, R. El, Enochs, E.: All modules have flat covers. Bull. Lond. Math. Soc. 33 (2001), 385-390. | DOI | MR | Zbl

[3] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. | DOI | MR | Zbl

[4] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. | DOI | MR | Zbl

[5] Damiano, R. F.: Coflat rings and modules. Pac. J. Math. 81 (1979), 349-369. | DOI | MR | Zbl

[6] Ding, N.: On envelopes with the unique mapping property. Commun. Algebra 24 (1996), 1459-1470. | DOI | MR | Zbl

[7] Enochs, E. E.: Injective and flat covers, envelopes and resolvents. Isr. J. Math. 39 (1981), 189-209. | DOI | MR | Zbl

[8] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). | MR | Zbl

[9] Facchini, A.: Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules. Progress in Mathematics 167 Birkhäuser, Basel (1998). | MR | Zbl

[10] Mao, L., Ding, N.: Relative projective modules and relative injective modules. Commun. Algebra 34 (2006), 2403-2418. | DOI | MR | Zbl

[11] Pinzon, K.: Absolutely pure covers. Commun. Algebra 36 (2008), 2186-2194. | DOI | MR | Zbl

[12] Rotman, J. J.: An Introduction to Homological Algebra. (2nd ed.). Universitext Springer, New York (2009). | MR | Zbl

[13] Stenström, B.: Coherent rings and $FP$-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | Zbl

[14] Xu, J.: Flat Covers of Modules. Lecture Notes in Mathematics 1634 Springer, Berlin (1996). | DOI | MR | Zbl

[15] Ming, R. Yue Chi: On quasi-injectivity and von Neumann regularity. Monatsh. Math. 95 (1983), 25-32. | DOI | MR

[16] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings. Commun. Algebra 32 (2004), 2425-2441. | DOI | MR | Zbl

[17] Zhou, D. X.: Cotorsion pair extensions. Acta Math. Sin., Engl. Ser. 25 (2009), 1567-1582. | DOI | MR | Zbl

Cité par Sources :