$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings.
DOI : 10.1007/s10587-014-0101-1
Classification : 16D40, 16D50, 16E40, 16P70, 18G25
Keywords: cover; envelope; $n$-coherent ring; $(n, d)$-injective; $(n, d)$-ring
@article{10_1007_s10587_014_0101_1,
     author = {Li, Weiqing and Ouyang, Baiyu},
     title = {$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {289--304},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.1007/s10587-014-0101-1},
     mrnumber = {3277736},
     zbl = {06391494},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/}
}
TY  - JOUR
AU  - Li, Weiqing
AU  - Ouyang, Baiyu
TI  - $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 289
EP  - 304
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/
DO  - 10.1007/s10587-014-0101-1
LA  - en
ID  - 10_1007_s10587_014_0101_1
ER  - 
%0 Journal Article
%A Li, Weiqing
%A Ouyang, Baiyu
%T $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
%J Czechoslovak Mathematical Journal
%D 2014
%P 289-304
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/
%R 10.1007/s10587-014-0101-1
%G en
%F 10_1007_s10587_014_0101_1
Li, Weiqing; Ouyang, Baiyu. $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304. doi : 10.1007/s10587-014-0101-1. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/

Cité par Sources :