$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings.
It is known that a ring $R$ is left Noetherian if and only if every left $R$-module has an injective (pre)cover. We show that $(1)$ if $R$ is a right $n$-coherent ring, then every right $R$-module has an $(n,d)$-injective (pre)cover; $(2)$ if $R$ is a ring such that every $(n,0)$-injective right $R$-module is $n$-pure extending, and if every right $R$-module has an $(n,0)$-injective cover, then $R$ is right $n$-coherent. As applications of these results, we give some characterizations of $(n,d)$-rings, von Neumann regular rings and semisimple rings.
DOI :
10.1007/s10587-014-0101-1
Classification :
16D40, 16D50, 16E40, 16P70, 18G25
Keywords: cover; envelope; $n$-coherent ring; $(n, d)$-injective; $(n, d)$-ring
Keywords: cover; envelope; $n$-coherent ring; $(n, d)$-injective; $(n, d)$-ring
@article{10_1007_s10587_014_0101_1,
author = {Li, Weiqing and Ouyang, Baiyu},
title = {$(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings},
journal = {Czechoslovak Mathematical Journal},
pages = {289--304},
year = {2014},
volume = {64},
number = {2},
doi = {10.1007/s10587-014-0101-1},
mrnumber = {3277736},
zbl = {06391494},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/}
}
TY - JOUR AU - Li, Weiqing AU - Ouyang, Baiyu TI - $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings JO - Czechoslovak Mathematical Journal PY - 2014 SP - 289 EP - 304 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/ DO - 10.1007/s10587-014-0101-1 LA - en ID - 10_1007_s10587_014_0101_1 ER -
%0 Journal Article %A Li, Weiqing %A Ouyang, Baiyu %T $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings %J Czechoslovak Mathematical Journal %D 2014 %P 289-304 %V 64 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0101-1/ %R 10.1007/s10587-014-0101-1 %G en %F 10_1007_s10587_014_0101_1
Li, Weiqing; Ouyang, Baiyu. $(n,d)$-injective covers, $n$-coherent rings, and $(n,d)$-rings. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 2, pp. 289-304. doi: 10.1007/s10587-014-0101-1
Cité par Sources :