Remark on inequalities for the Laplacian spread of graphs
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 285-287
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Two inequalities for the Laplacian spread of graphs are proved in this note. These inequalities are reverse to those obtained by Z. You, B. Liu: The Laplacian spread of graphs, Czech. Math. J. 62 (2012), 155–168.
Two inequalities for the Laplacian spread of graphs are proved in this note. These inequalities are reverse to those obtained by Z. You, B. Liu: The Laplacian spread of graphs, Czech. Math. J. 62 (2012), 155–168.
DOI :
10.1007/s10587-014-0100-2
Classification :
05C50, 15A18, 15A42
Keywords: Laplacian eigenvalue; spread of a graph
Keywords: Laplacian eigenvalue; spread of a graph
@article{10_1007_s10587_014_0100_2,
author = {Milovanovi\'c, Igor and Milovanovi\'c, Emina},
title = {Remark on inequalities for the {Laplacian} spread of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {285--287},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0100-2},
mrnumber = {3247461},
zbl = {06391493},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0100-2/}
}
TY - JOUR AU - Milovanović, Igor AU - Milovanović, Emina TI - Remark on inequalities for the Laplacian spread of graphs JO - Czechoslovak Mathematical Journal PY - 2014 SP - 285 EP - 287 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0100-2/ DO - 10.1007/s10587-014-0100-2 LA - en ID - 10_1007_s10587_014_0100_2 ER -
%0 Journal Article %A Milovanović, Igor %A Milovanović, Emina %T Remark on inequalities for the Laplacian spread of graphs %J Czechoslovak Mathematical Journal %D 2014 %P 285-287 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0100-2/ %R 10.1007/s10587-014-0100-2 %G en %F 10_1007_s10587_014_0100_2
Milovanović, Igor; Milovanović, Emina. Remark on inequalities for the Laplacian spread of graphs. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 285-287. doi: 10.1007/s10587-014-0100-2
Cité par Sources :