The primitive Boolean matrices with the second largest scrambling index by Boolean rank
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 269-283.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The scrambling index of an $n\times n$ primitive Boolean matrix $A$ is the smallest positive integer $k$ such that $A^k(A^{\rm T})^k=J$, where $A^{\rm T}$ denotes the transpose of $A$ and $J$ denotes the $n\times n$ all ones matrix. For an $m\times n$ Boolean matrix $M$, its Boolean rank $b(M)$ is the smallest positive integer $b$ such that $M=AB$ for some $m\times b$ Boolean matrix $A$ and $b\times n$ Boolean matrix $B$. In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an $n\times n$ primitive matrix $M$ in terms of its Boolean rank $b(M)$, and they also characterized all primitive matrices that achieve the upper bound. In this paper, we characterize primitive Boolean matrices that achieve the second largest scrambling index in terms of their Boolean rank.
DOI : 10.1007/s10587-014-0099-4
Classification : 05C20, 05C50, 05C75, 15B35
Keywords: scrambling index; primitive matrix; Boolean rank
@article{10_1007_s10587_014_0099_4,
     author = {Shao, Yanling and Gao, Yubin},
     title = {The primitive {Boolean} matrices with the second largest scrambling index by {Boolean} rank},
     journal = {Czechoslovak Mathematical Journal},
     pages = {269--283},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.1007/s10587-014-0099-4},
     mrnumber = {3247460},
     zbl = {06391492},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0099-4/}
}
TY  - JOUR
AU  - Shao, Yanling
AU  - Gao, Yubin
TI  - The primitive Boolean matrices with the second largest scrambling index by Boolean rank
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 269
EP  - 283
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0099-4/
DO  - 10.1007/s10587-014-0099-4
LA  - en
ID  - 10_1007_s10587_014_0099_4
ER  - 
%0 Journal Article
%A Shao, Yanling
%A Gao, Yubin
%T The primitive Boolean matrices with the second largest scrambling index by Boolean rank
%J Czechoslovak Mathematical Journal
%D 2014
%P 269-283
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0099-4/
%R 10.1007/s10587-014-0099-4
%G en
%F 10_1007_s10587_014_0099_4
Shao, Yanling; Gao, Yubin. The primitive Boolean matrices with the second largest scrambling index by Boolean rank. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 269-283. doi : 10.1007/s10587-014-0099-4. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0099-4/

Cité par Sources :