Fixed point results on a metric space endowed with a finite number of graphs and applications
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 241-250
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.
In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.
DOI : 10.1007/s10587-014-0097-6
Classification : 05C40, 06A06, 47H10
Keywords: fixed point; graph; metric space; order; cyclic map
@article{10_1007_s10587_014_0097_6,
     author = {Argoubi, Hajer and Samet, Bessem and Turinici, Mihai},
     title = {Fixed point results on a metric space endowed with a finite number of graphs and applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {241--250},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0097-6},
     mrnumber = {3247458},
     zbl = {06391490},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0097-6/}
}
TY  - JOUR
AU  - Argoubi, Hajer
AU  - Samet, Bessem
AU  - Turinici, Mihai
TI  - Fixed point results on a metric space endowed with a finite number of graphs and applications
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 241
EP  - 250
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0097-6/
DO  - 10.1007/s10587-014-0097-6
LA  - en
ID  - 10_1007_s10587_014_0097_6
ER  - 
%0 Journal Article
%A Argoubi, Hajer
%A Samet, Bessem
%A Turinici, Mihai
%T Fixed point results on a metric space endowed with a finite number of graphs and applications
%J Czechoslovak Mathematical Journal
%D 2014
%P 241-250
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0097-6/
%R 10.1007/s10587-014-0097-6
%G en
%F 10_1007_s10587_014_0097_6
Argoubi, Hajer; Samet, Bessem; Turinici, Mihai. Fixed point results on a metric space endowed with a finite number of graphs and applications. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 241-250. doi: 10.1007/s10587-014-0097-6

[1] Agarwal, R. P., El-Gebeily, M. A., O'Regan, D.: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87 (2008), 109-116. | DOI | MR | Zbl

[2] Aleomraninejad, S. M. A., Rezapour, S., Shahzad, N.: Some fixed point results on a metric space with a graph. Topology Appl. 159 (2012), 659-663. | MR | Zbl

[3] Altun, I., Simsek, H.: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. (2010), Article ID 621469, 17 pages. | MR | Zbl

[4] Beg, I., Butt, A. R., Radojević, S.: The contraction principle for set valued mappings on a metric space with a graph. Comput. Math. Appl. 60 (2010), 1214-1219. | DOI | MR | Zbl

[5] Bhaskar, T. G., Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), 1379-1393. | MR | Zbl

[6] Boyd, D. W., Wong, J. S. W.: On nonlinear contractions. Proc. Am. Math. Soc. 20 (1969), 458-464. | DOI | MR | Zbl

[7] Chatterjea, S. K.: Fixed-point theorems. C. R. Acad. Bulg. Sci. 25 (1972), 727-730. | MR | Zbl

[8] 'Cirić, Lj. B.: Generalized contractions and fixed-point theorems. Publ. Inst. Math., Nouv. Sér. 12 (1971), 19-26. | MR | Zbl

[9] Ćirić, Lj. B., Cakić, N., Rajović, M., Ume, J. S.: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. (2008), Article ID 131294, 11 pages. | MR | Zbl

[10] Espínola, R., Kirk, W. A.: Fixed point theorems in $\mathbb{R}$-trees with applications to graph theory. Topology Appl. 153 (2006), 1046-1055. | DOI | MR | Zbl

[11] Hardy, G. E., Rogers, T. D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16 (1973), 201-206. | DOI | MR | Zbl

[12] Harjani, J., Sadarangani, K.: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 71 (2009), 3403-3410. | MR | Zbl

[13] Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136 (2008), 1359-1373. | DOI | MR | Zbl

[14] Kannan, R.: On certain sets and fixed point theorems. Rev. Roum. Math. Pures Appl. 14 (1969), 51-54. | MR | Zbl

[15] Kirk, W. A., Srinivasan, P. S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4 (2003), 79-89. | MR | Zbl

[16] Nieto, J. J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. | DOI | MR | Zbl

[17] Nieto, J. J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin., Engl. Ser. 23 (2007), 2205-2212. | DOI | MR | Zbl

[18] Petruşel, A., Rus, I. A.: Fixed point theorems in ordered $L$-spaces. Proc. Am. Math. Soc. 134 (2006), 411-418. | DOI | MR | Zbl

[19] Ran, A. C. M., Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132 (2004), 1435-1443. | DOI | MR | Zbl

[20] Samet, B.: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72 (2010), 4508-4517. | DOI | MR | Zbl

[21] Samet, B., Vetro, C.: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 74 (2011), 4260-4268. | MR | Zbl

[22] Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136 (2008), 1861-1869. | DOI | MR | Zbl

[23] Turinici, M.: Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 117 (1986), 100-127. | DOI | MR | Zbl

Cité par Sources :