Keywords: directed pseudo-graph; adjacency matrix; Lie algebra
@article{10_1007_s10587_014_0096_7,
author = {Boza, Luis and Fedriani, Eugenio Manuel and N\'u\~nez, Juan and Pacheco, Ana Mar{\'\i}a and Villar, Mar{\'\i}a Trinidad},
title = {Directed pseudo-graphs and {Lie} algebras over finite fields},
journal = {Czechoslovak Mathematical Journal},
pages = {229--239},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0096-7},
mrnumber = {3247457},
zbl = {06391489},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0096-7/}
}
TY - JOUR AU - Boza, Luis AU - Fedriani, Eugenio Manuel AU - Núñez, Juan AU - Pacheco, Ana María AU - Villar, María Trinidad TI - Directed pseudo-graphs and Lie algebras over finite fields JO - Czechoslovak Mathematical Journal PY - 2014 SP - 229 EP - 239 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0096-7/ DO - 10.1007/s10587-014-0096-7 LA - en ID - 10_1007_s10587_014_0096_7 ER -
%0 Journal Article %A Boza, Luis %A Fedriani, Eugenio Manuel %A Núñez, Juan %A Pacheco, Ana María %A Villar, María Trinidad %T Directed pseudo-graphs and Lie algebras over finite fields %J Czechoslovak Mathematical Journal %D 2014 %P 229-239 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0096-7/ %R 10.1007/s10587-014-0096-7 %G en %F 10_1007_s10587_014_0096_7
Boza, Luis; Fedriani, Eugenio Manuel; Núñez, Juan; Pacheco, Ana María; Villar, María Trinidad. Directed pseudo-graphs and Lie algebras over finite fields. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 229-239. doi: 10.1007/s10587-014-0096-7
[1] Boza, L., Fedriani, E. M., Núñez, J.: The relation between oriented pseudo-graphs with multiple edges and some Lie algebras. Actas del IV Encuentro Andaluz de Matemática Discreta (2005), 99-104 Spanish.
[2] Carriazo, A., Fernández, L. M., Núñez, J.: Combinatorial structures associated with Lie algebras of finite dimension. Linear Algebra Appl. 389 (2004), 43-61. | MR | Zbl
[3] Ceballos, M., Núñez, J., Tenorio, Á. F.: Complete triangular structures and Lie algebras. Int. J. Comput. Math. 88 (2011), 1839-1851. | DOI | MR | Zbl
[4] Ceballos, M., Núñez, J., Tenorio, Á. F.: Study of Lie algebras by using combinatorial structures. Linear Algebra Appl. 436 (2012), 349-363. | MR | Zbl
[5] Ceballos, M., Núñez, J., Tenorio, A. F.: Combinatorial structures and Lie algebras of upper triangular matrices. Appl. Math. Lett. 25 (2012), 514-519. | DOI | MR
[6] Graaf, W. A. de: Classification of solvable Lie algebras. Exp. Math. 14 (2005), 15-25. | DOI | MR | Zbl
[7] Fernández, L. M., Martín-Martínez, L.: Lie algebras associated with triangular configurations. Linear Algebra Appl. 407 (2005), 43-63. | MR | Zbl
[8] Gross, J. L., Yellen, J.: Handbook of Graph Theory. Discrete Mathematics and its Applications CRC Press, Boca Raton (2004). | MR | Zbl
[9] Hamelink, R. C.: Graph theory and Lie algebra. Many Facets of Graph Theory, Proc. Conf. Western Michigan Univ., Kalamazoo/Mi. 1968 Lect. Notes Math. 110 149-153 Springer, Berlin (1969). | DOI | MR | Zbl
[10] Núñez, J., Pacheco, A., Villar, M. T.: Discrete mathematics applied to the treatment of some Lie theory problems. Sixth Conference on Discrete Mathematics and Computer Science Univ. Lleida, Lleida (2008), 485-492 Spanish (2008), 485-492. | MR
[11] Núñez, J., Pacheco, A. M., Villar, M. T.: Study of a family of Lie algebra over $\mathbb Z/3\mathbb Z$. Int. J. Math. Stat. 7 (2010), 40-45. | MR
[12] Patera, J., Zassenhaus, H.: Solvable Lie algebras of dimension $\leq 4$ over perfect fields. Linear Algebra Appl. 142 (1990), 1-17. | MR
[13] Varadarajan, V. S.: Lie Groups, Lie Algebras and Their Representations (Reprint of the 1974 edition). Graduate Texts in Mathematics 102 Springer, New York (1984). | DOI | MR | Zbl
Cité par Sources :