Directed pseudo-graphs and Lie algebras over finite fields
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 229-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four $2$-, $3$-, $4$-, and $5$-dimensional algebras of the studied family, respectively, over the field $\mathbb {Z}/2\mathbb {Z}$. Over $\mathbb {Z}/3\mathbb {Z}$, eight and twenty-two $2$- and $3$-dimensional Lie algebras, respectively, are also found. Finally, some ideas for future research are presented.
The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four $2$-, $3$-, $4$-, and $5$-dimensional algebras of the studied family, respectively, over the field $\mathbb {Z}/2\mathbb {Z}$. Over $\mathbb {Z}/3\mathbb {Z}$, eight and twenty-two $2$- and $3$-dimensional Lie algebras, respectively, are also found. Finally, some ideas for future research are presented.
DOI : 10.1007/s10587-014-0096-7
Classification : 05C99, 17B30, 17B45, 17B50, 17B60
Keywords: directed pseudo-graph; adjacency matrix; Lie algebra
@article{10_1007_s10587_014_0096_7,
     author = {Boza, Luis and Fedriani, Eugenio Manuel and N\'u\~nez, Juan and Pacheco, Ana Mar{\'\i}a and Villar, Mar{\'\i}a Trinidad},
     title = {Directed pseudo-graphs and {Lie} algebras over finite fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {229--239},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0096-7},
     mrnumber = {3247457},
     zbl = {06391489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0096-7/}
}
TY  - JOUR
AU  - Boza, Luis
AU  - Fedriani, Eugenio Manuel
AU  - Núñez, Juan
AU  - Pacheco, Ana María
AU  - Villar, María Trinidad
TI  - Directed pseudo-graphs and Lie algebras over finite fields
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 229
EP  - 239
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0096-7/
DO  - 10.1007/s10587-014-0096-7
LA  - en
ID  - 10_1007_s10587_014_0096_7
ER  - 
%0 Journal Article
%A Boza, Luis
%A Fedriani, Eugenio Manuel
%A Núñez, Juan
%A Pacheco, Ana María
%A Villar, María Trinidad
%T Directed pseudo-graphs and Lie algebras over finite fields
%J Czechoslovak Mathematical Journal
%D 2014
%P 229-239
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0096-7/
%R 10.1007/s10587-014-0096-7
%G en
%F 10_1007_s10587_014_0096_7
Boza, Luis; Fedriani, Eugenio Manuel; Núñez, Juan; Pacheco, Ana María; Villar, María Trinidad. Directed pseudo-graphs and Lie algebras over finite fields. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 229-239. doi: 10.1007/s10587-014-0096-7

[1] Boza, L., Fedriani, E. M., Núñez, J.: The relation between oriented pseudo-graphs with multiple edges and some Lie algebras. Actas del IV Encuentro Andaluz de Matemática Discreta (2005), 99-104 Spanish.

[2] Carriazo, A., Fernández, L. M., Núñez, J.: Combinatorial structures associated with Lie algebras of finite dimension. Linear Algebra Appl. 389 (2004), 43-61. | MR | Zbl

[3] Ceballos, M., Núñez, J., Tenorio, Á. F.: Complete triangular structures and Lie algebras. Int. J. Comput. Math. 88 (2011), 1839-1851. | DOI | MR | Zbl

[4] Ceballos, M., Núñez, J., Tenorio, Á. F.: Study of Lie algebras by using combinatorial structures. Linear Algebra Appl. 436 (2012), 349-363. | MR | Zbl

[5] Ceballos, M., Núñez, J., Tenorio, A. F.: Combinatorial structures and Lie algebras of upper triangular matrices. Appl. Math. Lett. 25 (2012), 514-519. | DOI | MR

[6] Graaf, W. A. de: Classification of solvable Lie algebras. Exp. Math. 14 (2005), 15-25. | DOI | MR | Zbl

[7] Fernández, L. M., Martín-Martínez, L.: Lie algebras associated with triangular configurations. Linear Algebra Appl. 407 (2005), 43-63. | MR | Zbl

[8] Gross, J. L., Yellen, J.: Handbook of Graph Theory. Discrete Mathematics and its Applications CRC Press, Boca Raton (2004). | MR | Zbl

[9] Hamelink, R. C.: Graph theory and Lie algebra. Many Facets of Graph Theory, Proc. Conf. Western Michigan Univ., Kalamazoo/Mi. 1968 Lect. Notes Math. 110 149-153 Springer, Berlin (1969). | DOI | MR | Zbl

[10] Núñez, J., Pacheco, A., Villar, M. T.: Discrete mathematics applied to the treatment of some Lie theory problems. Sixth Conference on Discrete Mathematics and Computer Science Univ. Lleida, Lleida (2008), 485-492 Spanish (2008), 485-492. | MR

[11] Núñez, J., Pacheco, A. M., Villar, M. T.: Study of a family of Lie algebra over $\mathbb Z/3\mathbb Z$. Int. J. Math. Stat. 7 (2010), 40-45. | MR

[12] Patera, J., Zassenhaus, H.: Solvable Lie algebras of dimension $\leq 4$ over perfect fields. Linear Algebra Appl. 142 (1990), 1-17. | MR

[13] Varadarajan, V. S.: Lie Groups, Lie Algebras and Their Representations (Reprint of the 1974 edition). Graduate Texts in Mathematics 102 Springer, New York (1984). | DOI | MR | Zbl

Cité par Sources :