Keywords: grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev's inequality; Trudinger's exponential inequality; continuity
@article{10_1007_s10587_014_0095_8,
author = {Ohno, Takao and Shimomura, Tetsu},
title = {Sobolev embeddings for {Riesz} potentials of functions in grand {Morrey} spaces of variable exponents over non-doubling measure spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {209--228},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0095-8},
mrnumber = {3247456},
zbl = {06391488},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0095-8/}
}
TY - JOUR AU - Ohno, Takao AU - Shimomura, Tetsu TI - Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces JO - Czechoslovak Mathematical Journal PY - 2014 SP - 209 EP - 228 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0095-8/ DO - 10.1007/s10587-014-0095-8 LA - en ID - 10_1007_s10587_014_0095_8 ER -
%0 Journal Article %A Ohno, Takao %A Shimomura, Tetsu %T Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces %J Czechoslovak Mathematical Journal %D 2014 %P 209-228 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0095-8/ %R 10.1007/s10587-014-0095-8 %G en %F 10_1007_s10587_014_0095_8
Ohno, Takao; Shimomura, Tetsu. Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 209-228. doi: 10.1007/s10587-014-0095-8
[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. | DOI | MR | Zbl
[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1995). | MR | Zbl
[3] Almeida, A., Hasanov, J., Samko, S. G.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15 (2008), 195-208. | MR | Zbl
[4] Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106 (1993), 77-92. | MR | Zbl
[5] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. | MR | Zbl
[6] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238; Corrections to ``The maximal function on variable $L^{p}$ spaces'' Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249. | MR | Zbl
[7] Diening, L.: Maximal function in generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. | MR
[8] Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$. Math. Nachr. 268 (2004), 31-43. | DOI | MR | Zbl
[9] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl
[10] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 (1995), 151-181. | MR | Zbl
[11] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Besselpotential spaces. Proc. R. Soc. Edinb., Sect. A 126 (1996), 995-1009. | MR
[12] Edmunds, D. E., Hurri-Syrjänen, R.: Sobolev inequalities of exponential type. Isr. J. Math. 123 (2001), 61-92. | DOI | MR | Zbl
[13] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119-128. | MR | Zbl
[14] Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem for weighted grand Lebesgue spaces. Stud. Math. 188 (2008), 123-133. | DOI | MR | Zbl
[15] Fiorenza, A., Krbec, M.: On the domain and range of the maximal operator. Nagoya Math. J. 158 (2000), 43-61. | DOI | MR | Zbl
[16] Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$. Stud. Math. 127 (1998), 223-231. | MR | Zbl
[17] Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for function in $L^{p(\cdot)}$ of variable exponent. Math. Inequal. Appl. 8 (2005), 619-631. | MR
[18] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366 (2010), 391-417. | DOI | MR | Zbl
[19] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. | MR | Zbl
[20] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the $p$-harmonic operator. Manuscr. Math. 92 (1997), 249-258. | DOI | MR | Zbl
[21] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces. Problems in mathematical analysis 50. J. Math. Sci. (N.Y.) 170 (2010), 423-443. | DOI | MR
[22] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107 (2010), 285-304. | DOI | MR | Zbl
[23] Gunawan, H., Sawano, Y., Sihwaningrum, I.: Fractional integral operators in nonhomogeneous spaces. Bull. Aust. Math. Soc. 80 (2009), 324-334. | DOI | MR | Zbl
[24] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 688 (2000), 101 pages. | MR | Zbl
[25] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2004/2005), 87-104. | MR
[26] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. | DOI | MR
[27] Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119 (1992), 129-143. | DOI | MR | Zbl
[28] Iwaniec, T., Sbordone, C.: Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math. 74 (1998), 183-212. | DOI | MR | Zbl
[29] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. | DOI | MR | Zbl
[30] Kokilashvili, V., Meskhi, A.: Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure. Complex Var. Elliptic Equ. 55 (2010), 923-936. | MR | Zbl
[31] Kokilashvili, V., Samko, S. G.: Boundedness of weighted singular integral operators in grand Lebesgue spaces. Georgian Math. J. 18 (2011), 259-269. | MR | Zbl
[32] Meskhi, A.: Maximal functions, potentials and singular integrals in grand Morrey spaces. Complex Var. Elliptic Equ. 56 (2011), 1003-1019. | MR | Zbl
[33] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744. | DOI | MR | Zbl
[34] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents. Complex Var. Elliptic Equ. 56 (2011), 671-695. | MR | Zbl
[35] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions. Tohoku Math. J. 61 (2009), 225-240. | DOI | MR | Zbl
[36] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60 (2008), 583-602. | DOI | MR | Zbl
[37] Jr., C. B. Morrey: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | Zbl
[38] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103. | DOI | MR | Zbl
[39] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. | DOI | MR
[40] Sawano, Y.: Generalized Morrey spaces for non-doubling measures. NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. | DOI | MR | Zbl
[41] Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. | DOI | MR | Zbl
[42] Sbordone, C.: Grand Sobolev spaces and their application to variational problems. Matematiche 51 (1996), 335-347. | MR | Zbl
[43] Serrin, J.: A remark on Morrey potential. Control Methods in PDE-Dynamical Systems. AMS-IMS-SIAM joint summer research conference, 2005 F. Ancona et al. Contemporary Mathematics 426 American Mathematical Society, Providence (2007), 307-315. | MR
[44] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). | MR | Zbl
[45] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-483. | MR | Zbl
[46] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics 120 Springer, Berlin (1989). | DOI | MR | Zbl
Cité par Sources :