Keywords: iteration digraph; fundamental constituent; digraphs product
@article{10_1007_s10587_014_0094_9,
author = {Nan, Jizhu and Wei, Yangjiang and Tang, Gaohua},
title = {The fundamental constituents of iteration digraphs of finite commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {199--208},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0094-9},
mrnumber = {3247455},
zbl = {06391487},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0094-9/}
}
TY - JOUR AU - Nan, Jizhu AU - Wei, Yangjiang AU - Tang, Gaohua TI - The fundamental constituents of iteration digraphs of finite commutative rings JO - Czechoslovak Mathematical Journal PY - 2014 SP - 199 EP - 208 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0094-9/ DO - 10.1007/s10587-014-0094-9 LA - en ID - 10_1007_s10587_014_0094_9 ER -
%0 Journal Article %A Nan, Jizhu %A Wei, Yangjiang %A Tang, Gaohua %T The fundamental constituents of iteration digraphs of finite commutative rings %J Czechoslovak Mathematical Journal %D 2014 %P 199-208 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0094-9/ %R 10.1007/s10587-014-0094-9 %G en %F 10_1007_s10587_014_0094_9
Nan, Jizhu; Wei, Yangjiang; Tang, Gaohua. The fundamental constituents of iteration digraphs of finite commutative rings. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 199-208. doi: 10.1007/s10587-014-0094-9
[1] Bini, G., Flamini, F.: Finite Commutative Rings and Their Applications. The Kluwer International Series in Engineering and Computer Science 680 Kluwer Academic Publishers, Dordrecht (2002). | MR | Zbl
[2] R. W. Gilmer, Jr.: Finite rings having a cyclic multiplicative group of units. Am. J. Math. 85 (1963), 447-452. | DOI | MR | Zbl
[3] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239. | MR | Zbl
[4] Raghavendran, R.: Finite associative rings. Compos. Math. 21 (1969), 195-229. | MR | Zbl
[5] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58. | MR
[6] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$. Czech. Math. J. 61 (2011), 337-358. | DOI | MR | Zbl
[7] Wei, Y., Tang, G., Su, H.: The square mapping graphs of finite commutative rings. Algebra Colloq. 19 (2012), 569-580. | MR | Zbl
[8] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. | MR | Zbl
Cité par Sources :