Commutators of the fractional maximal function on variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 183-197
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathscr {P}(\mathbb R^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb R^{n}\to [1,\infty )$ such that $$ 1 p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb R^n}p(x) \quad \text {and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb R^n}p(x)\infty , $$ and by $\mathscr {B}(\mathbb R^{n})$ the set of all $p(\cdot ) \in \mathscr {P}(\mathbb R^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb R^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb R ^{n})$ into $L^{q(\cdot )}(\mathbb R^{n})$, when $p(\cdot )\in \mathscr {P}(\mathbb R^{n})$, $0{\beta }$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathscr {B}(\mathbb R^{n})$.
DOI :
10.1007/s10587-014-0093-x
Classification :
42B25, 42B30, 46E30, 47B47
Keywords: commutator; BMO; fractional maximal function; variable exponent Lebesgue space
Keywords: commutator; BMO; fractional maximal function; variable exponent Lebesgue space
@article{10_1007_s10587_014_0093_x,
author = {Zhang, Pu and Wu, Jianglong},
title = {Commutators of the fractional maximal function on variable exponent {Lebesgue} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {183--197},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2014},
doi = {10.1007/s10587-014-0093-x},
mrnumber = {3247454},
zbl = {06391486},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/}
}
TY - JOUR AU - Zhang, Pu AU - Wu, Jianglong TI - Commutators of the fractional maximal function on variable exponent Lebesgue spaces JO - Czechoslovak Mathematical Journal PY - 2014 SP - 183 EP - 197 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/ DO - 10.1007/s10587-014-0093-x LA - en ID - 10_1007_s10587_014_0093_x ER -
%0 Journal Article %A Zhang, Pu %A Wu, Jianglong %T Commutators of the fractional maximal function on variable exponent Lebesgue spaces %J Czechoslovak Mathematical Journal %D 2014 %P 183-197 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/ %R 10.1007/s10587-014-0093-x %G en %F 10_1007_s10587_014_0093_x
Zhang, Pu; Wu, Jianglong. Commutators of the fractional maximal function on variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 183-197. doi: 10.1007/s10587-014-0093-x
Cité par Sources :