Commutators of the fractional maximal function on variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 183-197
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathscr {P}(\mathbb R^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb R^{n}\to [1,\infty )$ such that $$ 1 p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb R^n}p(x) \quad \text {and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb R^n}p(x)\infty , $$ and by $\mathscr {B}(\mathbb R^{n})$ the set of all $p(\cdot ) \in \mathscr {P}(\mathbb R^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb R^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb R ^{n})$ into $L^{q(\cdot )}(\mathbb R^{n})$, when $p(\cdot )\in \mathscr {P}(\mathbb R^{n})$, $0{\beta }
Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathscr {P}(\mathbb R^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb R^{n}\to [1,\infty )$ such that $$ 1 p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb R^n}p(x) \quad \text {and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb R^n}p(x)\infty , $$ and by $\mathscr {B}(\mathbb R^{n})$ the set of all $p(\cdot ) \in \mathscr {P}(\mathbb R^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb R^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb R ^{n})$ into $L^{q(\cdot )}(\mathbb R^{n})$, when $p(\cdot )\in \mathscr {P}(\mathbb R^{n})$, $0{\beta }$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathscr {B}(\mathbb R^{n})$.
DOI : 10.1007/s10587-014-0093-x
Classification : 42B25, 42B30, 46E30, 47B47
Keywords: commutator; BMO; fractional maximal function; variable exponent Lebesgue space
@article{10_1007_s10587_014_0093_x,
     author = {Zhang, Pu and Wu, Jianglong},
     title = {Commutators of the fractional maximal function on variable exponent {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--197},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0093-x},
     mrnumber = {3247454},
     zbl = {06391486},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/}
}
TY  - JOUR
AU  - Zhang, Pu
AU  - Wu, Jianglong
TI  - Commutators of the fractional maximal function on variable exponent Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 183
EP  - 197
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/
DO  - 10.1007/s10587-014-0093-x
LA  - en
ID  - 10_1007_s10587_014_0093_x
ER  - 
%0 Journal Article
%A Zhang, Pu
%A Wu, Jianglong
%T Commutators of the fractional maximal function on variable exponent Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 183-197
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/
%R 10.1007/s10587-014-0093-x
%G en
%F 10_1007_s10587_014_0093_x
Zhang, Pu; Wu, Jianglong. Commutators of the fractional maximal function on variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 183-197. doi: 10.1007/s10587-014-0093-x

[1] Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions. Proc. Am. Math. Soc. (electronic) 128 (2000), 3329-3334. | DOI | MR | Zbl

[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR

[3] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103 (1976), 611-635. | MR | Zbl

[4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl

[5] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR

[6] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657-700. | DOI | MR

[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl

[8] Huang, A. W., Xu, J. S.: Multilinear singular integrals and commutators in variable exponent Lebesgue spaces. Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 69-77. | MR | Zbl

[9] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. | DOI | MR | Zbl

[10] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[11] Milman, M., Schonbek, T.: Second order estimates in interpolation theory and applications. Proc. Am. Math. Soc. 110 (1990), 961-969. | DOI | MR | Zbl

[12] Segovia, C., Torrea, J. L.: Vector-valued commutators and applications. Indiana Univ. Math. J. 38 (1989), 959-971. | MR | Zbl

[13] Segovia, C., Torrea, J. L.: Higher order commutators for vector-valued Calderón-Zygmund operators. Trans. Am. Math. Soc. 336 (1993), 537-556. | MR | Zbl

[14] Xu, J. S.: The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent. Czech. Math. J. 57 (2007), 13-27. | DOI | MR | Zbl

[15] Zhang, P., Wu, J. L.: Commutators of the fractional maximal functions. Acta Math. Sin., Chin. Ser. 52 (2009), 1235-1238. | MR | Zbl

Cité par Sources :