Commutators of the fractional maximal function on variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 183-197.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathscr {P}(\mathbb R^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb R^{n}\to [1,\infty )$ such that $$ 1 p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb R^n}p(x) \quad \text {and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb R^n}p(x)\infty , $$ and by $\mathscr {B}(\mathbb R^{n})$ the set of all $p(\cdot ) \in \mathscr {P}(\mathbb R^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb R^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb R ^{n})$ into $L^{q(\cdot )}(\mathbb R^{n})$, when $p(\cdot )\in \mathscr {P}(\mathbb R^{n})$, $0{\beta }$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathscr {B}(\mathbb R^{n})$.
DOI : 10.1007/s10587-014-0093-x
Classification : 42B25, 42B30, 46E30, 47B47
Keywords: commutator; BMO; fractional maximal function; variable exponent Lebesgue space
@article{10_1007_s10587_014_0093_x,
     author = {Zhang, Pu and Wu, Jianglong},
     title = {Commutators of the fractional maximal function on variable exponent {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--197},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.1007/s10587-014-0093-x},
     mrnumber = {3247454},
     zbl = {06391486},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/}
}
TY  - JOUR
AU  - Zhang, Pu
AU  - Wu, Jianglong
TI  - Commutators of the fractional maximal function on variable exponent Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 183
EP  - 197
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/
DO  - 10.1007/s10587-014-0093-x
LA  - en
ID  - 10_1007_s10587_014_0093_x
ER  - 
%0 Journal Article
%A Zhang, Pu
%A Wu, Jianglong
%T Commutators of the fractional maximal function on variable exponent Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 183-197
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/
%R 10.1007/s10587-014-0093-x
%G en
%F 10_1007_s10587_014_0093_x
Zhang, Pu; Wu, Jianglong. Commutators of the fractional maximal function on variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 183-197. doi : 10.1007/s10587-014-0093-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0093-x/

Cité par Sources :