The influence of weakly-supplemented subgroups on the structure of finite groups
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 173-182
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In the paper it is proved that a finite group $G$ is $p$-nilpotent provided $p$ is the smallest prime number dividing the order of $G$ and every minimal subgroup of $P\cap G'$ is weakly-supplemented in $N_{G}(P),$ where $P$ is a Sylow $p$-subgroup of $G$. As applications, some interesting results with weakly-supplemented minimal subgroups of $P\cap G'$ are obtained.
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In the paper it is proved that a finite group $G$ is $p$-nilpotent provided $p$ is the smallest prime number dividing the order of $G$ and every minimal subgroup of $P\cap G'$ is weakly-supplemented in $N_{G}(P),$ where $P$ is a Sylow $p$-subgroup of $G$. As applications, some interesting results with weakly-supplemented minimal subgroups of $P\cap G'$ are obtained.
DOI : 10.1007/s10587-014-0092-y
Classification : 20D10, 20D20
Keywords: weakly-supplemented subgroup; $p$-nilpotent group; supersolvable group
@article{10_1007_s10587_014_0092_y,
     author = {Kong, Qingjun and Liu, Qingfeng},
     title = {The influence of weakly-supplemented subgroups on the structure of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {173--182},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0092-y},
     mrnumber = {3247453},
     zbl = {06391485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0092-y/}
}
TY  - JOUR
AU  - Kong, Qingjun
AU  - Liu, Qingfeng
TI  - The influence of weakly-supplemented subgroups on the structure of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 173
EP  - 182
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0092-y/
DO  - 10.1007/s10587-014-0092-y
LA  - en
ID  - 10_1007_s10587_014_0092_y
ER  - 
%0 Journal Article
%A Kong, Qingjun
%A Liu, Qingfeng
%T The influence of weakly-supplemented subgroups on the structure of finite groups
%J Czechoslovak Mathematical Journal
%D 2014
%P 173-182
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0092-y/
%R 10.1007/s10587-014-0092-y
%G en
%F 10_1007_s10587_014_0092_y
Kong, Qingjun; Liu, Qingfeng. The influence of weakly-supplemented subgroups on the structure of finite groups. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 173-182. doi: 10.1007/s10587-014-0092-y

[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234-246. | DOI | MR | Zbl

[2] Asaad, M., Ramadan, M., Shaalan, A.: Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group. Arch. Math. 56 (1991), 521-527. | DOI | MR | Zbl

[3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161-166. | DOI | MR | Zbl

[4] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen. German Math. Z. 91 (1966), 198-205. | DOI | MR | Zbl

[5] Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12 (1937), 188-200. | MR | Zbl

[6] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. | DOI | MR | Zbl

[7] Huppert, B.: Endliche Gruppen I. German Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin (1967). | DOI | MR | Zbl

[8] Kang, P.: Minimal subgroups and the structure of finite groups. Ric. Mat. 62 (2013), 91-95. | DOI | MR

[9] Li, D., Guo, X.: The influence of $c$-normality of subgroups on the structure of finite groups. II. Commun. Algebra 26 (1998), 1913-1922. | DOI | MR | Zbl

[10] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80 Springer, New York (1993). | MR

Cité par Sources :