Keywords: block space; variable exponent analysis; Hardy-Littlewood maximal operator
@article{10_1007_s10587_014_0091_z,
author = {Cheung, Ka Luen and Ho, Kwok-Pun},
title = {Boundedness of {Hardy-Littlewood} maximal operator on block spaces with variable exponent},
journal = {Czechoslovak Mathematical Journal},
pages = {159--171},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0091-z},
mrnumber = {3247452},
zbl = {06391484},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0091-z/}
}
TY - JOUR AU - Cheung, Ka Luen AU - Ho, Kwok-Pun TI - Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent JO - Czechoslovak Mathematical Journal PY - 2014 SP - 159 EP - 171 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0091-z/ DO - 10.1007/s10587-014-0091-z LA - en ID - 10_1007_s10587_014_0091_z ER -
%0 Journal Article %A Cheung, Ka Luen %A Ho, Kwok-Pun %T Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent %J Czechoslovak Mathematical Journal %D 2014 %P 159-171 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0091-z/ %R 10.1007/s10587-014-0091-z %G en %F 10_1007_s10587_014_0091_z
Cheung, Ka Luen; Ho, Kwok-Pun. Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 159-171. doi: 10.1007/s10587-014-0091-z
[1] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics vol. 129 Academic Press, Boston (1988). | MR | Zbl
[2] Blasco, O., Ruiz, A., Vega, L.: Non interpolation in Morrey-Campanato and block spaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. | MR | Zbl
[3] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. | MR | Zbl
[4] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. 2 (2009), 151-173. | MR | Zbl
[5] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl
[6] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR
[7] Diening, L.: Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657-700. | DOI | MR | Zbl
[8] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. | MR
[9] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn., Math. 34 (2009), 503-522. | MR
[10] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl
[11] Hästö, P. A.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16 (2009), 263-278. | DOI | MR | Zbl
[12] Ho, K.-P.: Atomic decompositions of Hardy-Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn., Math (to appear).
[13] Ho, K.-P.: Atomic decompositions of weighted Hardy-Morrey spaces. Hokkaido Math. J. 42 (2013), 131-157. | DOI | MR | Zbl
[14] Ho, K.-P.: Characterizations of $BMO$ by $A_{p}$ weights and $p$-convexity. Hiroshima Math. J. 41 (2011), 153-165. | DOI | MR | Zbl
[15] Ho, K.-P.: Generalized Boyd's indices and applications. Analysis (Munich) 32 (2012), 97-106. | MR | Zbl
[16] Ho, K.-P.: Littlewood-Paley spaces. Math. Scand. 108 (2011), 77-102. | DOI | MR | Zbl
[17] Ho, K.-P.: Vector-valued singular integral operators on Morrey type spaces and variable Triebel-Lizorkin-Morrey spaces. Ann. Acad. Sci. Fenn., Math. 37 (2012), 375-406. | DOI | MR | Zbl
[18] Kokilashvili, V., Meskhi, A.: Boundedness of maximal and singular operators in Morrey spaces with variable exponent. Armen. J. Math. 1 (2008), 18-28. | MR | Zbl
[19] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR
[20] Lerner, A. K.: On some questions related to the maximal operator on variable $L_{p}$ spaces. Trans. Am. Math. Soc. 362 (2010), 4229-4242. | DOI | MR | Zbl
[21] Lerner, A. K.: Some remarks on the Hardy-Littlewood maximal function on variable $L_{p}$ spaces. Math. Z. 251 (2005), 509-521. | DOI | MR | Zbl
[22] Meyer, Y., Taibleson, M. H., Weiss, G.: Some functional analytic properties of the space $B_{q}$ generated by blocks. Indiana Univ. Math. J. 34 (1985), 493-515. | DOI | MR
[23] Nekvinda, A.: A note on maximal operator on $l^{\{ p_{n}\} }$ and $L^{p(x)}({\Bbb R})$. J. Funct. Spaces Appl. 5 (2007), 49-88. | DOI | MR
[24] Nekvinda, A.: Hardy-Littlewood maximal operator on $L^{p(x)}({\Bbb R}^{n})$. Math. Inequal. Appl. 7 (2004), 255-265. | MR
[25] Nekvinda, A.: Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl. 337 (2008), 1345-1365. | DOI | MR | Zbl
[26] Soria, F.: Characterizations of classes of functions generated by blocks and associated Hardy spaces. Indiana Univ. Math. J. 34 (1985), 463-492. | DOI | MR | Zbl
Cité par Sources :