Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 159-171
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.
The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents. The main result of this paper is on the boundedness of the Hardy-Littlewood maximal operator on the block space with variable exponents. We find that the Hardy-Littlewood maximal operator is bounded on the block space with variable exponents whenever the Hardy-Littlewood maximal operator is bounded on the corresponding Lebesgue space with variable exponents.
DOI : 10.1007/s10587-014-0091-z
Classification : 42B25, 46E30
Keywords: block space; variable exponent analysis; Hardy-Littlewood maximal operator
@article{10_1007_s10587_014_0091_z,
     author = {Cheung, Ka Luen and Ho, Kwok-Pun},
     title = {Boundedness of {Hardy-Littlewood} maximal operator on block spaces with variable exponent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {159--171},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0091-z},
     mrnumber = {3247452},
     zbl = {06391484},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0091-z/}
}
TY  - JOUR
AU  - Cheung, Ka Luen
AU  - Ho, Kwok-Pun
TI  - Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 159
EP  - 171
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0091-z/
DO  - 10.1007/s10587-014-0091-z
LA  - en
ID  - 10_1007_s10587_014_0091_z
ER  - 
%0 Journal Article
%A Cheung, Ka Luen
%A Ho, Kwok-Pun
%T Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
%J Czechoslovak Mathematical Journal
%D 2014
%P 159-171
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0091-z/
%R 10.1007/s10587-014-0091-z
%G en
%F 10_1007_s10587_014_0091_z
Cheung, Ka Luen; Ho, Kwok-Pun. Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 159-171. doi: 10.1007/s10587-014-0091-z

[1] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics vol. 129 Academic Press, Boston (1988). | MR | Zbl

[2] Blasco, O., Ruiz, A., Vega, L.: Non interpolation in Morrey-Campanato and block spaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. | MR | Zbl

[3] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. | MR | Zbl

[4] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. 2 (2009), 151-173. | MR | Zbl

[5] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | Zbl

[6] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR

[7] Diening, L.: Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657-700. | DOI | MR | Zbl

[8] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. | MR

[9] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn., Math. 34 (2009), 503-522. | MR

[10] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl

[11] Hästö, P. A.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16 (2009), 263-278. | DOI | MR | Zbl

[12] Ho, K.-P.: Atomic decompositions of Hardy-Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn., Math (to appear).

[13] Ho, K.-P.: Atomic decompositions of weighted Hardy-Morrey spaces. Hokkaido Math. J. 42 (2013), 131-157. | DOI | MR | Zbl

[14] Ho, K.-P.: Characterizations of $BMO$ by $A_{p}$ weights and $p$-convexity. Hiroshima Math. J. 41 (2011), 153-165. | DOI | MR | Zbl

[15] Ho, K.-P.: Generalized Boyd's indices and applications. Analysis (Munich) 32 (2012), 97-106. | MR | Zbl

[16] Ho, K.-P.: Littlewood-Paley spaces. Math. Scand. 108 (2011), 77-102. | DOI | MR | Zbl

[17] Ho, K.-P.: Vector-valued singular integral operators on Morrey type spaces and variable Triebel-Lizorkin-Morrey spaces. Ann. Acad. Sci. Fenn., Math. 37 (2012), 375-406. | DOI | MR | Zbl

[18] Kokilashvili, V., Meskhi, A.: Boundedness of maximal and singular operators in Morrey spaces with variable exponent. Armen. J. Math. 1 (2008), 18-28. | MR | Zbl

[19] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[20] Lerner, A. K.: On some questions related to the maximal operator on variable $L_{p}$ spaces. Trans. Am. Math. Soc. 362 (2010), 4229-4242. | DOI | MR | Zbl

[21] Lerner, A. K.: Some remarks on the Hardy-Littlewood maximal function on variable $L_{p}$ spaces. Math. Z. 251 (2005), 509-521. | DOI | MR | Zbl

[22] Meyer, Y., Taibleson, M. H., Weiss, G.: Some functional analytic properties of the space $B_{q}$ generated by blocks. Indiana Univ. Math. J. 34 (1985), 493-515. | DOI | MR

[23] Nekvinda, A.: A note on maximal operator on $l^{\{ p_{n}\} }$ and $L^{p(x)}({\Bbb R})$. J. Funct. Spaces Appl. 5 (2007), 49-88. | DOI | MR

[24] Nekvinda, A.: Hardy-Littlewood maximal operator on $L^{p(x)}({\Bbb R}^{n})$. Math. Inequal. Appl. 7 (2004), 255-265. | MR

[25] Nekvinda, A.: Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl. 337 (2008), 1345-1365. | DOI | MR | Zbl

[26] Soria, F.: Characterizations of classes of functions generated by blocks and associated Hardy spaces. Indiana Univ. Math. J. 34 (1985), 463-492. | DOI | MR | Zbl

Cité par Sources :