Keywords: group ring; unit group; augmentation ideal; Jacobson radical
@article{10_1007_s10587_014_0090_0,
author = {Tang, Gaohua and Wei, Yangjiang and Li, Yuanlin},
title = {Unit groups of group algebras of some small groups},
journal = {Czechoslovak Mathematical Journal},
pages = {149--157},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0090-0},
mrnumber = {3247451},
zbl = {06391483},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/}
}
TY - JOUR AU - Tang, Gaohua AU - Wei, Yangjiang AU - Li, Yuanlin TI - Unit groups of group algebras of some small groups JO - Czechoslovak Mathematical Journal PY - 2014 SP - 149 EP - 157 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/ DO - 10.1007/s10587-014-0090-0 LA - en ID - 10_1007_s10587_014_0090_0 ER -
%0 Journal Article %A Tang, Gaohua %A Wei, Yangjiang %A Li, Yuanlin %T Unit groups of group algebras of some small groups %J Czechoslovak Mathematical Journal %D 2014 %P 149-157 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/ %R 10.1007/s10587-014-0090-0 %G en %F 10_1007_s10587_014_0090_0
Tang, Gaohua; Wei, Yangjiang; Li, Yuanlin. Unit groups of group algebras of some small groups. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 149-157. doi: 10.1007/s10587-014-0090-0
[1] Brockhaus, P.: On the radical of a group algebra. J. Algebra 95 (1985), 454-472. | DOI | MR | Zbl
[2] Chen, W., Xie, C., Tang, G.: The unit groups of $F_{p^n}G$ of groups with order $21$. J. Guangxi Teachers Education University 30 (2013), 14-20. | MR
[3] Creedon, L.: The unit group of small group algebras and the minimum counterexample to the isomorphism problem. Int. J. Pure Appl. Math. 49 (2008), 531-537. | MR | Zbl
[4] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. | DOI | MR
[5] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}D_6$. Int. J. Pure Appl. Math. 45 (2008), 315-320. | MR
[6] Gildea, J.: The structure of $\mathcal{U}(F_{5^k}D_{20})$. Int. Electron. J. Algebra (electronic only) 8 (2010), 153-160. | MR
[7] Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}(C_3\times D_6)$. Commun. Algebra 38 (2010), 3311-3317. | DOI | MR
[8] Gildea, J.: The structure of the unit group of the group algebra of $F_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. | DOI | MR
[9] Gildea, J.: The structure of the unit group of the group algebra of Paulis's group over any field of characteristic $2$. Int. J. Algebra Comput. 20 (2010), 721-729. | DOI | MR | Zbl
[10] Gildea, J.: Units of group algebras of non-Abelian groups of order $16$ and exponent $4$ over $F_{2^k}$. Results Math. 61 (2012), 245-254. | DOI | MR
[11] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order $12$ over any finite field of characteristic $3$. Algebra Discrete Math. 11 (2011), 46-58. | MR | Zbl
[12] Nezhmetdinov, T. I.: Groups of units of finite commutative group rings. Commun. Algebra 38 (2010), 4669-4681. | DOI | MR | Zbl
[13] Passman, D. S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics Wiley, New York (1977). | MR | Zbl
[14] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Algebras and Applications 1 Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR
[15] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. 71 (2007), 21-26. | MR | Zbl
[16] Tang, G., Gao, Y.: The unit group of $FG$ of groups with order $12$. Int. J. Pure Appl. Math. 73 (2011), 143-158. | MR
Cité par Sources :