Unit groups of group algebras of some small groups
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 149-157
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $.
Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $.
DOI : 10.1007/s10587-014-0090-0
Classification : 16S34, 16U60, 20C05
Keywords: group ring; unit group; augmentation ideal; Jacobson radical
@article{10_1007_s10587_014_0090_0,
     author = {Tang, Gaohua and Wei, Yangjiang and Li, Yuanlin},
     title = {Unit groups of group algebras of some small groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {149--157},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0090-0},
     mrnumber = {3247451},
     zbl = {06391483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/}
}
TY  - JOUR
AU  - Tang, Gaohua
AU  - Wei, Yangjiang
AU  - Li, Yuanlin
TI  - Unit groups of group algebras of some small groups
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 149
EP  - 157
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/
DO  - 10.1007/s10587-014-0090-0
LA  - en
ID  - 10_1007_s10587_014_0090_0
ER  - 
%0 Journal Article
%A Tang, Gaohua
%A Wei, Yangjiang
%A Li, Yuanlin
%T Unit groups of group algebras of some small groups
%J Czechoslovak Mathematical Journal
%D 2014
%P 149-157
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/
%R 10.1007/s10587-014-0090-0
%G en
%F 10_1007_s10587_014_0090_0
Tang, Gaohua; Wei, Yangjiang; Li, Yuanlin. Unit groups of group algebras of some small groups. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 149-157. doi: 10.1007/s10587-014-0090-0

[1] Brockhaus, P.: On the radical of a group algebra. J. Algebra 95 (1985), 454-472. | DOI | MR | Zbl

[2] Chen, W., Xie, C., Tang, G.: The unit groups of $F_{p^n}G$ of groups with order $21$. J. Guangxi Teachers Education University 30 (2013), 14-20. | MR

[3] Creedon, L.: The unit group of small group algebras and the minimum counterexample to the isomorphism problem. Int. J. Pure Appl. Math. 49 (2008), 531-537. | MR | Zbl

[4] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. | DOI | MR

[5] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}D_6$. Int. J. Pure Appl. Math. 45 (2008), 315-320. | MR

[6] Gildea, J.: The structure of $\mathcal{U}(F_{5^k}D_{20})$. Int. Electron. J. Algebra (electronic only) 8 (2010), 153-160. | MR

[7] Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}(C_3\times D_6)$. Commun. Algebra 38 (2010), 3311-3317. | DOI | MR

[8] Gildea, J.: The structure of the unit group of the group algebra of $F_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. | DOI | MR

[9] Gildea, J.: The structure of the unit group of the group algebra of Paulis's group over any field of characteristic $2$. Int. J. Algebra Comput. 20 (2010), 721-729. | DOI | MR | Zbl

[10] Gildea, J.: Units of group algebras of non-Abelian groups of order $16$ and exponent $4$ over $F_{2^k}$. Results Math. 61 (2012), 245-254. | DOI | MR

[11] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order $12$ over any finite field of characteristic $3$. Algebra Discrete Math. 11 (2011), 46-58. | MR | Zbl

[12] Nezhmetdinov, T. I.: Groups of units of finite commutative group rings. Commun. Algebra 38 (2010), 4669-4681. | DOI | MR | Zbl

[13] Passman, D. S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics Wiley, New York (1977). | MR | Zbl

[14] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Algebras and Applications 1 Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR

[15] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. 71 (2007), 21-26. | MR | Zbl

[16] Tang, G., Gao, Y.: The unit group of $FG$ of groups with order $12$. Int. J. Pure Appl. Math. 73 (2011), 143-158. | MR

Cité par Sources :