Unit groups of group algebras of some small groups
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 149-157
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $.
Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $.
DOI :
10.1007/s10587-014-0090-0
Classification :
16S34, 16U60, 20C05
Keywords: group ring; unit group; augmentation ideal; Jacobson radical
Keywords: group ring; unit group; augmentation ideal; Jacobson radical
@article{10_1007_s10587_014_0090_0,
author = {Tang, Gaohua and Wei, Yangjiang and Li, Yuanlin},
title = {Unit groups of group algebras of some small groups},
journal = {Czechoslovak Mathematical Journal},
pages = {149--157},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0090-0},
mrnumber = {3247451},
zbl = {06391483},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/}
}
TY - JOUR AU - Tang, Gaohua AU - Wei, Yangjiang AU - Li, Yuanlin TI - Unit groups of group algebras of some small groups JO - Czechoslovak Mathematical Journal PY - 2014 SP - 149 EP - 157 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/ DO - 10.1007/s10587-014-0090-0 LA - en ID - 10_1007_s10587_014_0090_0 ER -
%0 Journal Article %A Tang, Gaohua %A Wei, Yangjiang %A Li, Yuanlin %T Unit groups of group algebras of some small groups %J Czechoslovak Mathematical Journal %D 2014 %P 149-157 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0090-0/ %R 10.1007/s10587-014-0090-0 %G en %F 10_1007_s10587_014_0090_0
Tang, Gaohua; Wei, Yangjiang; Li, Yuanlin. Unit groups of group algebras of some small groups. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 149-157. doi: 10.1007/s10587-014-0090-0
Cité par Sources :