Keywords: compact congruence; congruence-distributive variety
@article{10_1007_s10587_014_0088_7,
author = {Krajn{\'\i}k, Filip and Plo\v{s}\v{c}ica, Miroslav},
title = {Congruence lattices in varieties with compact intersection property},
journal = {Czechoslovak Mathematical Journal},
pages = {115--132},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0088-7},
mrnumber = {3247449},
zbl = {06391481},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0088-7/}
}
TY - JOUR AU - Krajník, Filip AU - Ploščica, Miroslav TI - Congruence lattices in varieties with compact intersection property JO - Czechoslovak Mathematical Journal PY - 2014 SP - 115 EP - 132 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0088-7/ DO - 10.1007/s10587-014-0088-7 LA - en ID - 10_1007_s10587_014_0088_7 ER -
%0 Journal Article %A Krajník, Filip %A Ploščica, Miroslav %T Congruence lattices in varieties with compact intersection property %J Czechoslovak Mathematical Journal %D 2014 %P 115-132 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0088-7/ %R 10.1007/s10587-014-0088-7 %G en %F 10_1007_s10587_014_0088_7
Krajník, Filip; Ploščica, Miroslav. Congruence lattices in varieties with compact intersection property. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 115-132. doi: 10.1007/s10587-014-0088-7
[1] Agliano, P., Baker, K. A.: Congruence intersection properties for varieties of algebras. J. Aust. Math. Soc., Ser. A 67 (1999), 104-121. | DOI | MR | Zbl
[2] Baker, K. A.: Primitive satisfaction and equational problems for lattices and other algebras. Trans. Am. Math. Soc. 190 (1974), 125-150. | DOI | MR | Zbl
[3] Blok, W. J., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences. I. Algebra Univers. 15 (1982), 195-227. | DOI | MR | Zbl
[4] Gillibert, P., Ploščica, M.: Congruence FD-maximal varieties of algebras. Int. J. Algebra Comput. 22 1250053, 14 pages (2012). | DOI | MR | Zbl
[5] Grätzer, G.: General Lattice Theory. (With appendices with B. A. Davey, R. Freese, B. Ganter, et al.) Paperback reprint of the 1998 2nd edition Birkhäuser, Basel (2003). | MR | Zbl
[6] Katriňák, T.: A new proof of the construction theorem for Stone algebras. Proc. Am. Math. Soc. 40 (1973), 75-78. | DOI | MR | Zbl
[7] Katriňák, T., Mitschke, A.: Stonesche Verbände der Ordnung $n$ und Postalgebren. Math. Ann. 199 (1972), 13-30 German. | DOI | MR | Zbl
[8] Lee, K. B.: Equational classes of distributive pseudo-complemented lattices. Can. J. Math. 22 (1970), 881-891. | DOI | MR | Zbl
[9] Ploščica, M.: Separation in distributive congruence lattices. Algebra Univers. 49 (2003), 1-12. | MR | Zbl
[10] Ploščica, M.: Finite congruence lattices in congruence distributive varieties. I. Chajda, et al. Proceedings of the 64th workshop on general algebra ``64. Arbeitstagung Allgemeine Algebra'', Olomouc, Czech Republic, May 30--June 2, 2002 and of the 65th workshop on general algebra ``65. Arbeitstagung Allgemeine Algebra'', Potsdam, Germany, March 21-23, 2003 Verlag Johannes Heyn, Klagenfurt. Contrib. Gen. Algebra {\it 14} 119-125 (2004). | MR | Zbl
[11] Ploščica, M.: Local separation in distributive semilattices. Algebra Univers. 54 (2005), 323-335. | DOI | MR | Zbl
[12] Ploščica, M., Tůma, J., Wehrung, F.: Congruence lattices of free lattices in non-distributive varieties. Colloq. Math. 76 (1998), 269-278. | DOI | MR | Zbl
[13] Růžička, P.: Lattices of two-sided ideals of locally matricial algebras and the $\Gamma$-invariant problem. Isr. J. Math. 142 (2004), 1-28. | DOI | MR | Zbl
[14] Schmidt, E. T.: The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice. Acta Sci. Math. (Szeged) 43 (1981), 153-168. | MR | Zbl
[15] Wehrung, F.: A uniform refinement property for congruence lattices. Proc. Am. Math. Soc. 127 (1999), 363-370. | DOI | MR | Zbl
Cité par Sources :