Congruence lattices in varieties with compact intersection property
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 115-132
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We say that a variety ${\mathcal V}$ of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every $A\in {\mathcal V}$ is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in ${\mathcal V}$ and embeddings between them. We believe that the strategy used here can be further developed and used to describe the congruence lattices for any (locally finite) congruence-distributive CIP variety.
We say that a variety ${\mathcal V}$ of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every $A\in {\mathcal V}$ is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in ${\mathcal V}$ and embeddings between them. We believe that the strategy used here can be further developed and used to describe the congruence lattices for any (locally finite) congruence-distributive CIP variety.
DOI : 10.1007/s10587-014-0088-7
Classification : 06D15, 08A30, 08B10
Keywords: compact congruence; congruence-distributive variety
@article{10_1007_s10587_014_0088_7,
     author = {Krajn{\'\i}k, Filip and Plo\v{s}\v{c}ica, Miroslav},
     title = {Congruence lattices in varieties with compact intersection property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {115--132},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0088-7},
     mrnumber = {3247449},
     zbl = {06391481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0088-7/}
}
TY  - JOUR
AU  - Krajník, Filip
AU  - Ploščica, Miroslav
TI  - Congruence lattices in varieties with compact intersection property
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 115
EP  - 132
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0088-7/
DO  - 10.1007/s10587-014-0088-7
LA  - en
ID  - 10_1007_s10587_014_0088_7
ER  - 
%0 Journal Article
%A Krajník, Filip
%A Ploščica, Miroslav
%T Congruence lattices in varieties with compact intersection property
%J Czechoslovak Mathematical Journal
%D 2014
%P 115-132
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0088-7/
%R 10.1007/s10587-014-0088-7
%G en
%F 10_1007_s10587_014_0088_7
Krajník, Filip; Ploščica, Miroslav. Congruence lattices in varieties with compact intersection property. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 115-132. doi: 10.1007/s10587-014-0088-7

[1] Agliano, P., Baker, K. A.: Congruence intersection properties for varieties of algebras. J. Aust. Math. Soc., Ser. A 67 (1999), 104-121. | DOI | MR | Zbl

[2] Baker, K. A.: Primitive satisfaction and equational problems for lattices and other algebras. Trans. Am. Math. Soc. 190 (1974), 125-150. | DOI | MR | Zbl

[3] Blok, W. J., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences. I. Algebra Univers. 15 (1982), 195-227. | DOI | MR | Zbl

[4] Gillibert, P., Ploščica, M.: Congruence FD-maximal varieties of algebras. Int. J. Algebra Comput. 22 1250053, 14 pages (2012). | DOI | MR | Zbl

[5] Grätzer, G.: General Lattice Theory. (With appendices with B. A. Davey, R. Freese, B. Ganter, et al.) Paperback reprint of the 1998 2nd edition Birkhäuser, Basel (2003). | MR | Zbl

[6] Katriňák, T.: A new proof of the construction theorem for Stone algebras. Proc. Am. Math. Soc. 40 (1973), 75-78. | DOI | MR | Zbl

[7] Katriňák, T., Mitschke, A.: Stonesche Verbände der Ordnung $n$ und Postalgebren. Math. Ann. 199 (1972), 13-30 German. | DOI | MR | Zbl

[8] Lee, K. B.: Equational classes of distributive pseudo-complemented lattices. Can. J. Math. 22 (1970), 881-891. | DOI | MR | Zbl

[9] Ploščica, M.: Separation in distributive congruence lattices. Algebra Univers. 49 (2003), 1-12. | MR | Zbl

[10] Ploščica, M.: Finite congruence lattices in congruence distributive varieties. I. Chajda, et al. Proceedings of the 64th workshop on general algebra ``64. Arbeitstagung Allgemeine Algebra'', Olomouc, Czech Republic, May 30--June 2, 2002 and of the 65th workshop on general algebra ``65. Arbeitstagung Allgemeine Algebra'', Potsdam, Germany, March 21-23, 2003 Verlag Johannes Heyn, Klagenfurt. Contrib. Gen. Algebra {\it 14} 119-125 (2004). | MR | Zbl

[11] Ploščica, M.: Local separation in distributive semilattices. Algebra Univers. 54 (2005), 323-335. | DOI | MR | Zbl

[12] Ploščica, M., Tůma, J., Wehrung, F.: Congruence lattices of free lattices in non-distributive varieties. Colloq. Math. 76 (1998), 269-278. | DOI | MR | Zbl

[13] Růžička, P.: Lattices of two-sided ideals of locally matricial algebras and the $\Gamma$-invariant problem. Isr. J. Math. 142 (2004), 1-28. | DOI | MR | Zbl

[14] Schmidt, E. T.: The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice. Acta Sci. Math. (Szeged) 43 (1981), 153-168. | MR | Zbl

[15] Wehrung, F.: A uniform refinement property for congruence lattices. Proc. Am. Math. Soc. 127 (1999), 363-370. | DOI | MR | Zbl

Cité par Sources :