Maximal distributional chaos of weighted shift operators on Köthe sequence spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 105-114 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\to \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$.
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\to \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$.
DOI : 10.1007/s10587-014-0087-8
Classification : 26A18, 28D20, 37B40, 37D45, 54H20
Keywords: weighted shift operator; principal measure; distributional chaos
@article{10_1007_s10587_014_0087_8,
     author = {Wu, Xinxing},
     title = {Maximal distributional chaos of weighted shift operators on {K\"othe} sequence spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--114},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0087-8},
     mrnumber = {3247448},
     zbl = {06391480},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/}
}
TY  - JOUR
AU  - Wu, Xinxing
TI  - Maximal distributional chaos of weighted shift operators on Köthe sequence spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 105
EP  - 114
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/
DO  - 10.1007/s10587-014-0087-8
LA  - en
ID  - 10_1007_s10587_014_0087_8
ER  - 
%0 Journal Article
%A Wu, Xinxing
%T Maximal distributional chaos of weighted shift operators on Köthe sequence spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 105-114
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/
%R 10.1007/s10587-014-0087-8
%G en
%F 10_1007_s10587_014_0087_8
Wu, Xinxing. Maximal distributional chaos of weighted shift operators on Köthe sequence spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 105-114. doi: 10.1007/s10587-014-0087-8

[1] Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373 (2011), 83-93. | DOI | MR | Zbl

[2] Duan, J., Fu, X.-C., Liu, P.-D., Manning, A.: A linear chaotic quantum harmonic oscillator. Appl. Math. Lett. 12 (1999), 15-19. | DOI | MR | Zbl

[3] Köthe, G.: Topological Vector Spaces I. Translated from German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159 Springer, New York (1969). | MR

[4] Li, T. Y., Yorke, J. A.: Period three implies chaos. Am. Math. Mon. 82 (1975), 985-992. | DOI | MR | Zbl

[5] Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351 (2009), 607-615. | DOI | MR | Zbl

[6] Martínez-Giménez, F.: Chaos for power series of backward shift operators. Proc. Am. Math. Soc. 135 (2007), 1741-1752. | DOI | MR | Zbl

[7] Meise, R., Vogt, D.: Introduction to Functional Analysis. Translated from the German by M. S. Ramanujan and revised by the authors. Oxford Graduate Texts Mathematics 2 The Clarendon Press, Oxford University Press, New York (1997). | MR | Zbl

[8] Oprocha, P., Wilczyński, P.: Shift spaces and distributional chaos. Chaos Solitons Fractals 31 (2007), 347-355. | DOI | MR | Zbl

[9] Pikula, R.: On some notions of chaos in dimension zero. Colloq. Math. 107 (2007), 167-177. | DOI | MR | Zbl

[10] Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344 (1994), 737-754. | DOI | MR | Zbl

[11] Schweizer, B., Sklar, A., Smítal, J.: Distributional (and other) chaos and its measurement. Real Anal. Exch. 26 (2000/01), 495-524. | DOI | MR

[12] Smítal, J., Štefánková, M.: Distributional chaos for triangular maps. Chaos Solitons Fractals 21 (2004), 1125-1128. | DOI | MR | Zbl

[13] Wang, L., Huan, S., Huang, G.: A note on Schweizer-Smital chaos. Nonlinear Anal., Theory Methods Appl. 68 (2008), 1682-1686. | DOI | MR | Zbl

[14] Wu, X., Zhu, P.: On the equivalence of four chaotic operators. Appl. Math. Lett. 25 (2012), 545-549. | DOI | MR | Zbl

[15] Wu, X., Zhu, P.: The principal measure of a quantum harmonic oscillator. J. Phys. A, Math. Theor. 44 (2011), ID 505101, 6 pages. | MR | Zbl

[16] Wu, X., Zhu, P.: Chaos in a class of nonconstant weighted shift operators. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), ID 1350010, 9 pages. | MR | Zbl

Cité par Sources :