Maximal distributional chaos of weighted shift operators on Köthe sequence spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 105-114
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\to \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$.
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator $B_{w}^{n}\colon \lambda _{p}(A)\to \lambda _{p}(A)$ defined on the Köthe sequence space $\lambda _{p}(A)$ exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$ and any $n\in \mathbb {N}$ is obtained. Under this assumption, the principal measure of $B_{w}^{n}$ is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional $\epsilon $-chaos for any $0 \epsilon \mathop{\rm diam} \lambda _{p}(A)$.
DOI :
10.1007/s10587-014-0087-8
Classification :
26A18, 28D20, 37B40, 37D45, 54H20
Keywords: weighted shift operator; principal measure; distributional chaos
Keywords: weighted shift operator; principal measure; distributional chaos
@article{10_1007_s10587_014_0087_8,
author = {Wu, Xinxing},
title = {Maximal distributional chaos of weighted shift operators on {K\"othe} sequence spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {105--114},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0087-8},
mrnumber = {3247448},
zbl = {06391480},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/}
}
TY - JOUR AU - Wu, Xinxing TI - Maximal distributional chaos of weighted shift operators on Köthe sequence spaces JO - Czechoslovak Mathematical Journal PY - 2014 SP - 105 EP - 114 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/ DO - 10.1007/s10587-014-0087-8 LA - en ID - 10_1007_s10587_014_0087_8 ER -
%0 Journal Article %A Wu, Xinxing %T Maximal distributional chaos of weighted shift operators on Köthe sequence spaces %J Czechoslovak Mathematical Journal %D 2014 %P 105-114 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/ %R 10.1007/s10587-014-0087-8 %G en %F 10_1007_s10587_014_0087_8
Wu, Xinxing. Maximal distributional chaos of weighted shift operators on Köthe sequence spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 105-114. doi: 10.1007/s10587-014-0087-8
Cité par Sources :