Keywords: weighted shift operator; principal measure; distributional chaos
@article{10_1007_s10587_014_0087_8,
author = {Wu, Xinxing},
title = {Maximal distributional chaos of weighted shift operators on {K\"othe} sequence spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {105--114},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0087-8},
mrnumber = {3247448},
zbl = {06391480},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/}
}
TY - JOUR AU - Wu, Xinxing TI - Maximal distributional chaos of weighted shift operators on Köthe sequence spaces JO - Czechoslovak Mathematical Journal PY - 2014 SP - 105 EP - 114 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/ DO - 10.1007/s10587-014-0087-8 LA - en ID - 10_1007_s10587_014_0087_8 ER -
%0 Journal Article %A Wu, Xinxing %T Maximal distributional chaos of weighted shift operators on Köthe sequence spaces %J Czechoslovak Mathematical Journal %D 2014 %P 105-114 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0087-8/ %R 10.1007/s10587-014-0087-8 %G en %F 10_1007_s10587_014_0087_8
Wu, Xinxing. Maximal distributional chaos of weighted shift operators on Köthe sequence spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 105-114. doi: 10.1007/s10587-014-0087-8
[1] Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373 (2011), 83-93. | DOI | MR | Zbl
[2] Duan, J., Fu, X.-C., Liu, P.-D., Manning, A.: A linear chaotic quantum harmonic oscillator. Appl. Math. Lett. 12 (1999), 15-19. | DOI | MR | Zbl
[3] Köthe, G.: Topological Vector Spaces I. Translated from German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159 Springer, New York (1969). | MR
[4] Li, T. Y., Yorke, J. A.: Period three implies chaos. Am. Math. Mon. 82 (1975), 985-992. | DOI | MR | Zbl
[5] Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351 (2009), 607-615. | DOI | MR | Zbl
[6] Martínez-Giménez, F.: Chaos for power series of backward shift operators. Proc. Am. Math. Soc. 135 (2007), 1741-1752. | DOI | MR | Zbl
[7] Meise, R., Vogt, D.: Introduction to Functional Analysis. Translated from the German by M. S. Ramanujan and revised by the authors. Oxford Graduate Texts Mathematics 2 The Clarendon Press, Oxford University Press, New York (1997). | MR | Zbl
[8] Oprocha, P., Wilczyński, P.: Shift spaces and distributional chaos. Chaos Solitons Fractals 31 (2007), 347-355. | DOI | MR | Zbl
[9] Pikula, R.: On some notions of chaos in dimension zero. Colloq. Math. 107 (2007), 167-177. | DOI | MR | Zbl
[10] Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344 (1994), 737-754. | DOI | MR | Zbl
[11] Schweizer, B., Sklar, A., Smítal, J.: Distributional (and other) chaos and its measurement. Real Anal. Exch. 26 (2000/01), 495-524. | DOI | MR
[12] Smítal, J., Štefánková, M.: Distributional chaos for triangular maps. Chaos Solitons Fractals 21 (2004), 1125-1128. | DOI | MR | Zbl
[13] Wang, L., Huan, S., Huang, G.: A note on Schweizer-Smital chaos. Nonlinear Anal., Theory Methods Appl. 68 (2008), 1682-1686. | DOI | MR | Zbl
[14] Wu, X., Zhu, P.: On the equivalence of four chaotic operators. Appl. Math. Lett. 25 (2012), 545-549. | DOI | MR | Zbl
[15] Wu, X., Zhu, P.: The principal measure of a quantum harmonic oscillator. J. Phys. A, Math. Theor. 44 (2011), ID 505101, 6 pages. | MR | Zbl
[16] Wu, X., Zhu, P.: Chaos in a class of nonconstant weighted shift operators. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), ID 1350010, 9 pages. | MR | Zbl
Cité par Sources :