New results for EP matrices in indefinite inner product spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 91-103
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study $J$-EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and $J$-EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some conditions.
In this paper we study $J$-EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and $J$-EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some conditions.
DOI : 10.1007/s10587-014-0086-9
Classification : 06A06, 15A09, 47B50
Keywords: EP matrix; indefinite matrix product; reverse order law; partial order; indefinite inner product space
@article{10_1007_s10587_014_0086_9,
     author = {Radojevi\'c, Ivana M.},
     title = {New results for {EP} matrices in indefinite inner product spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {91--103},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0086-9},
     mrnumber = {3247447},
     zbl = {06391479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0086-9/}
}
TY  - JOUR
AU  - Radojević, Ivana M.
TI  - New results for EP matrices in indefinite inner product spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 91
EP  - 103
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0086-9/
DO  - 10.1007/s10587-014-0086-9
LA  - en
ID  - 10_1007_s10587_014_0086_9
ER  - 
%0 Journal Article
%A Radojević, Ivana M.
%T New results for EP matrices in indefinite inner product spaces
%J Czechoslovak Mathematical Journal
%D 2014
%P 91-103
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0086-9/
%R 10.1007/s10587-014-0086-9
%G en
%F 10_1007_s10587_014_0086_9
Radojević, Ivana M. New results for EP matrices in indefinite inner product spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 91-103. doi: 10.1007/s10587-014-0086-9

[1] Arghiriade, E.: Sur les matrices qui sont permutables avec leur inverse généralisée. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 35 (1963), 244-251 French. | MR | Zbl

[2] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications. 2nd ed. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). | MR | Zbl

[3] Djordjević, D. S., Rakočević, V.: Lectures on Generalized Inverses. University of Niš, Faculty of Sciences and Mathematics, Niš (2008). | MR

[4] Drazin, M. P.: Natural structures on semigroups with involution. Bull. Am. Math. Soc. 84 (1978), 139-141. | DOI | MR | Zbl

[5] Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Birkhäuser Basel (2005). | MR | Zbl

[6] Hartwig, R. E., Katz, I. J.: On products of $EP$ matrices. Linear Algebra Appl. 252 (1997), 339-345. | DOI | MR | Zbl

[7] Jayaraman, S.: EP matrices in indefinite inner product spaces. Funct. Anal. Approx. Comput. 4 (2012), 23-31. | MR

[8] Kamaraj, K., Ramanathan, K., Sivakumar, K. C.: Indefinite product of matrices and applications to indefinite inner product spaces. J. Anal. 12 (2004), 135-142. | MR | Zbl

[9] Meenakshi, A.: On sums of EP matrices. Houston J. Math. 9 (1983), 63-69. | MR | Zbl

[10] Mitra, S. K., Bhimasankaram, P., Malik, S. B.: Matrix Partial Orders, Shorted Operators and Applications. Series in Algebra 10 World Scientific, Hackensack (2010). | MR | Zbl

[11] Ramanathan, K., Sivakumar, K. C.: Theorems of the alternative over indefinite inner product spaces. J. Optim. Theory Appl. 137 (2008), 99-104. | DOI | MR | Zbl

Cité par Sources :