Ideal CR submanifolds in non-flat complex space forms
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 79-90.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An explicit representation for ideal CR submanifolds of a complex hyperbolic space has been derived in T. Sasahara (2002). We simplify and reformulate the representation in terms of certain Kähler submanifolds. In addition, we investigate the almost contact metric structure of ideal CR submanifolds in a complex hyperbolic space. Moreover, we obtain a codimension reduction theorem for ideal CR submanifolds in a complex projective space.
DOI : 10.1007/s10587-014-0085-x
Classification : 32V40, 53B25, 53C40, 53C42
Keywords: $\delta $-invariants; CR submanifolds; ideal submanifolds
@article{10_1007_s10587_014_0085_x,
     author = {Sasahara, Toru},
     title = {Ideal {CR} submanifolds in non-flat complex space forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.1007/s10587-014-0085-x},
     mrnumber = {3247446},
     zbl = {06391478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0085-x/}
}
TY  - JOUR
AU  - Sasahara, Toru
TI  - Ideal CR submanifolds in non-flat complex space forms
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 79
EP  - 90
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0085-x/
DO  - 10.1007/s10587-014-0085-x
LA  - en
ID  - 10_1007_s10587_014_0085_x
ER  - 
%0 Journal Article
%A Sasahara, Toru
%T Ideal CR submanifolds in non-flat complex space forms
%J Czechoslovak Mathematical Journal
%D 2014
%P 79-90
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0085-x/
%R 10.1007/s10587-014-0085-x
%G en
%F 10_1007_s10587_014_0085_x
Sasahara, Toru. Ideal CR submanifolds in non-flat complex space forms. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 79-90. doi : 10.1007/s10587-014-0085-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0085-x/

Cité par Sources :