A generalization of the finiteness problem of the local cohomology modules
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 69-78
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
DOI :
10.1007/s10587-014-0084-y
Classification :
13C05, 13D45, 13E10
Keywords: local cohomology module; weakly Laskerian module; ${\mathfrak a}$-weakly Laskerian module; associated prime
Keywords: local cohomology module; weakly Laskerian module; ${\mathfrak a}$-weakly Laskerian module; associated prime
@article{10_1007_s10587_014_0084_y,
author = {Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar},
title = {A generalization of the finiteness problem of the local cohomology modules},
journal = {Czechoslovak Mathematical Journal},
pages = {69--78},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2014},
doi = {10.1007/s10587-014-0084-y},
mrnumber = {3247445},
zbl = {06391477},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/}
}
TY - JOUR AU - Abbasi, Ahmad AU - Roshan-Shekalgourabi, Hajar TI - A generalization of the finiteness problem of the local cohomology modules JO - Czechoslovak Mathematical Journal PY - 2014 SP - 69 EP - 78 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/ DO - 10.1007/s10587-014-0084-y LA - en ID - 10_1007_s10587_014_0084_y ER -
%0 Journal Article %A Abbasi, Ahmad %A Roshan-Shekalgourabi, Hajar %T A generalization of the finiteness problem of the local cohomology modules %J Czechoslovak Mathematical Journal %D 2014 %P 69-78 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/ %R 10.1007/s10587-014-0084-y %G en %F 10_1007_s10587_014_0084_y
Abbasi, Ahmad; Roshan-Shekalgourabi, Hajar. A generalization of the finiteness problem of the local cohomology modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 69-78. doi: 10.1007/s10587-014-0084-y
Cité par Sources :