A generalization of the finiteness problem of the local cohomology modules
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 69-78
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i
Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
DOI : 10.1007/s10587-014-0084-y
Classification : 13C05, 13D45, 13E10
Keywords: local cohomology module; weakly Laskerian module; ${\mathfrak a}$-weakly Laskerian module; associated prime
@article{10_1007_s10587_014_0084_y,
     author = {Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar},
     title = {A generalization of the finiteness problem of the local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {69--78},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0084-y},
     mrnumber = {3247445},
     zbl = {06391477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/}
}
TY  - JOUR
AU  - Abbasi, Ahmad
AU  - Roshan-Shekalgourabi, Hajar
TI  - A generalization of the finiteness problem of the local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 69
EP  - 78
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/
DO  - 10.1007/s10587-014-0084-y
LA  - en
ID  - 10_1007_s10587_014_0084_y
ER  - 
%0 Journal Article
%A Abbasi, Ahmad
%A Roshan-Shekalgourabi, Hajar
%T A generalization of the finiteness problem of the local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2014
%P 69-78
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/
%R 10.1007/s10587-014-0084-y
%G en
%F 10_1007_s10587_014_0084_y
Abbasi, Ahmad; Roshan-Shekalgourabi, Hajar. A generalization of the finiteness problem of the local cohomology modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 69-78. doi: 10.1007/s10587-014-0084-y

[1] Azami, J., Naghipour, R., Vakili, B.: Finiteness properties of local cohomology modules for ${\mathfrak a}$-minimax modules. Proc. Am. Math. Soc. 137 (2009), 439-448. | DOI | MR

[2] Bijan-Zadeh, M. H.: A common generalization of local cohomology theories. Glasg. Math. J. 21 (1980), 173-181. | DOI | MR | Zbl

[3] Borna, K., Sahandi, P., Yassemi, S.: Artinian local cohomology modules. Can. Math. Bull. 50 (2007), 598-602. | DOI | MR | Zbl

[4] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules. Proc. Am. Math. Soc. 128 (2000), 2851-2853. | DOI | MR | Zbl

[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). | MR | Zbl

[6] Dibaei, M. T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules. Manuscr. Math. 117 (2005), 199-205. | DOI | MR | Zbl

[7] Divaani-Aazar, K., Esmkhani, M. A.: Artinianness of local cohomology modules of {ZD}-modules. Commun. Algebra 33 (2005), 2857-2863. | DOI | MR | Zbl

[8] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. 133 (2005), 655-660. | DOI | MR | Zbl

[9] Herzog, J.: Komplexe, Auflösungen und Dualität in der lokalen Algebra. Habilitationsschrift, Universität Regensburg (1970), German.

[10] Huneke, C.: Problems on local cohomology modules. Free Resolution in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math., 2 Jones and Bartlett, Boston, MA (1992), 93-108. | MR

[11] Katzman, M.: An example of an infinite set of associated primes of local cohomology module. J. Algebra 252 (2002), 161-166. | DOI | MR

[12] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Am. Math. Soc. (electronic) 135 (2007), 1319-1327. | DOI | MR | Zbl

[13] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules. Commun. Algebra 27 (1999), 6191-6198. | DOI | MR | Zbl

[14] Laleh, S. S., Sadeghi, M. Y., Mostaghim, M. H.: Some results on the cofiniteness of local cohomology modules. Czech. Math. J. 62 (2012), 105-110. | DOI | MR | Zbl

[15] Mafi, A.: A generalization of the finiteness problem in local cohomology. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. | DOI | MR | Zbl

[16] Quy, P. H.: On the finiteness of associated primes of local cohomology modules. Proc. Am. Math. Soc. 138 (2010), 1965-1968. | DOI | MR | Zbl

[17] Singh, A. K.: $p$-torsion elements in local cohomology modules. Math. Res. Lett. 7 (2000), 165-176. | DOI | MR | Zbl

[18] Zöschinger, H.: Minimax modules. German J. Algebra 102 (1986), 1-32. | DOI | MR | Zbl

Cité par Sources :