A generalization of the finiteness problem of the local cohomology modules
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
DOI : 10.1007/s10587-014-0084-y
Classification : 13C05, 13D45, 13E10
Keywords: local cohomology module; weakly Laskerian module; ${\mathfrak a}$-weakly Laskerian module; associated prime
@article{10_1007_s10587_014_0084_y,
     author = {Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar},
     title = {A generalization of the finiteness problem of the local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2014},
     doi = {10.1007/s10587-014-0084-y},
     mrnumber = {3247445},
     zbl = {06391477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/}
}
TY  - JOUR
AU  - Abbasi, Ahmad
AU  - Roshan-Shekalgourabi, Hajar
TI  - A generalization of the finiteness problem of the local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 69
EP  - 78
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/
DO  - 10.1007/s10587-014-0084-y
LA  - en
ID  - 10_1007_s10587_014_0084_y
ER  - 
%0 Journal Article
%A Abbasi, Ahmad
%A Roshan-Shekalgourabi, Hajar
%T A generalization of the finiteness problem of the local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2014
%P 69-78
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/
%R 10.1007/s10587-014-0084-y
%G en
%F 10_1007_s10587_014_0084_y
Abbasi, Ahmad; Roshan-Shekalgourabi, Hajar. A generalization of the finiteness problem of the local cohomology modules. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 69-78. doi : 10.1007/s10587-014-0084-y. http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0084-y/

Cité par Sources :