A De Bruijn-Erdős theorem for $1$-$2$ metric spaces
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 45-51
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A special case of a combinatorial theorem of De Bruijn and Erdős asserts that every noncollinear set of $n$ points in the plane determines at least $n$ distinct lines. Chen and Chvátal suggested a possible generalization of this assertion in metric spaces with appropriately defined lines. We prove this generalization in all metric spaces where each nonzero distance equals $1$ or $2$.
DOI :
10.1007/s10587-014-0081-1
Classification :
05D99, 51G99
Keywords: line in metric space; De Bruijn-Erd\H os theorem
Keywords: line in metric space; De Bruijn-Erd\H os theorem
@article{10_1007_s10587_014_0081_1,
author = {Chv\'atal, Va\v{s}ek},
title = {A {De} {Bruijn-Erd\H{o}s} theorem for $1$-$2$ metric spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {45--51},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2014},
doi = {10.1007/s10587-014-0081-1},
mrnumber = {3247442},
zbl = {06391474},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0081-1/}
}
TY - JOUR AU - Chvátal, Vašek TI - A De Bruijn-Erdős theorem for $1$-$2$ metric spaces JO - Czechoslovak Mathematical Journal PY - 2014 SP - 45 EP - 51 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0081-1/ DO - 10.1007/s10587-014-0081-1 LA - en ID - 10_1007_s10587_014_0081_1 ER -
Chvátal, Vašek. A De Bruijn-Erdős theorem for $1$-$2$ metric spaces. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 45-51. doi: 10.1007/s10587-014-0081-1
Cité par Sources :