Decomposition of complete graphs into $(0,2)$-prisms
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 37-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

R. Frucht and J. Gallian (1988) proved that bipartite prisms of order $2n$ have an $\alpha $-labeling, thus they decompose the complete graph $K_{6nx+1}$ for any positive integer $x$. We use a technique called the $\rho ^{+}$-labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order $2n$ called generalized prisms decompose the complete graph $K_{6nx+1}$ for any positive integer $x$.
R. Frucht and J. Gallian (1988) proved that bipartite prisms of order $2n$ have an $\alpha $-labeling, thus they decompose the complete graph $K_{6nx+1}$ for any positive integer $x$. We use a technique called the $\rho ^{+}$-labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order $2n$ called generalized prisms decompose the complete graph $K_{6nx+1}$ for any positive integer $x$.
DOI : 10.1007/s10587-014-0080-2
Classification : 05B30, 05C51, 05C70, 05C78
Keywords: decompositions; prism; $\rho ^+$-labeling
@article{10_1007_s10587_014_0080_2,
     author = {Cichacz, Sylwia and Dib, Soleh and Froncek, Dalibor},
     title = {Decomposition of complete graphs into $(0,2)$-prisms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {37--43},
     year = {2014},
     volume = {64},
     number = {1},
     doi = {10.1007/s10587-014-0080-2},
     mrnumber = {3247441},
     zbl = {06391473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0080-2/}
}
TY  - JOUR
AU  - Cichacz, Sylwia
AU  - Dib, Soleh
AU  - Froncek, Dalibor
TI  - Decomposition of complete graphs into $(0,2)$-prisms
JO  - Czechoslovak Mathematical Journal
PY  - 2014
SP  - 37
EP  - 43
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0080-2/
DO  - 10.1007/s10587-014-0080-2
LA  - en
ID  - 10_1007_s10587_014_0080_2
ER  - 
%0 Journal Article
%A Cichacz, Sylwia
%A Dib, Soleh
%A Froncek, Dalibor
%T Decomposition of complete graphs into $(0,2)$-prisms
%J Czechoslovak Mathematical Journal
%D 2014
%P 37-43
%V 64
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0080-2/
%R 10.1007/s10587-014-0080-2
%G en
%F 10_1007_s10587_014_0080_2
Cichacz, Sylwia; Dib, Soleh; Froncek, Dalibor. Decomposition of complete graphs into $(0,2)$-prisms. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 37-43. doi: 10.1007/s10587-014-0080-2

[1] Cichacz, S., Froncek, D.: Factorization of $K_{n,n}$ into $(0,j)$-prisms. Inf. Process. Lett. 109 (2009), 932-934. | DOI | MR | Zbl

[2] Cichacz, S., Fronček, D., Kovář, P.: Note on decomposition of $K_{n,n}$ into $(0,j)$-prisms. Combinatorial Algorithms Lecture Notes in Computer Science 5874 Springer, Berlin (2009), 125-133. | DOI | MR | Zbl

[3] Cichacz, S., Fronček, D., Kovář, P.: Decomposition of complete bipartite graphs into generalized prisms. Eur. J. Comb. 34 (2013), 104-110. | DOI | MR | Zbl

[4] El-Zanati, S. I., Eynden, C. Vanden, Punnim, N.: On the cyclic decomposition of complete graphs into bipartite graphs. Australas. J. Comb. 24 (2001), 209-219. | MR

[5] Frucht, R., Gallian, J.: Labeling prisms. Ars Comb. 26 (1988), 69-82. | MR | Zbl

[6] Huang, J. H., Skiena, S.: Gracefully labeling prisms. Ars Comb. 38 (1994), 225-242. | MR | Zbl

[7] Jungreis, D. S., Reid, M.: Labeling grids. Ars Comb. 34 (1992), 167-182. | MR | Zbl

[8] Rosa, A.: On certain valuations of the vertices of a graph. Theory of Graphs Int. Symp. Rome 1966 (1967), 349-355. | MR | Zbl

Cité par Sources :