Decomposition of complete graphs into $(0,2)$-prisms
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 37-43
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
R. Frucht and J. Gallian (1988) proved that bipartite prisms of order $2n$ have an $\alpha $-labeling, thus they decompose the complete graph $K_{6nx+1}$ for any positive integer $x$. We use a technique called the $\rho ^{+}$-labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order $2n$ called generalized prisms decompose the complete graph $K_{6nx+1}$ for any positive integer $x$.
R. Frucht and J. Gallian (1988) proved that bipartite prisms of order $2n$ have an $\alpha $-labeling, thus they decompose the complete graph $K_{6nx+1}$ for any positive integer $x$. We use a technique called the $\rho ^{+}$-labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order $2n$ called generalized prisms decompose the complete graph $K_{6nx+1}$ for any positive integer $x$.
DOI :
10.1007/s10587-014-0080-2
Classification :
05B30, 05C51, 05C70, 05C78
Keywords: decompositions; prism; $\rho ^+$-labeling
Keywords: decompositions; prism; $\rho ^+$-labeling
@article{10_1007_s10587_014_0080_2,
author = {Cichacz, Sylwia and Dib, Soleh and Froncek, Dalibor},
title = {Decomposition of complete graphs into $(0,2)$-prisms},
journal = {Czechoslovak Mathematical Journal},
pages = {37--43},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0080-2},
mrnumber = {3247441},
zbl = {06391473},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0080-2/}
}
TY - JOUR AU - Cichacz, Sylwia AU - Dib, Soleh AU - Froncek, Dalibor TI - Decomposition of complete graphs into $(0,2)$-prisms JO - Czechoslovak Mathematical Journal PY - 2014 SP - 37 EP - 43 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0080-2/ DO - 10.1007/s10587-014-0080-2 LA - en ID - 10_1007_s10587_014_0080_2 ER -
%0 Journal Article %A Cichacz, Sylwia %A Dib, Soleh %A Froncek, Dalibor %T Decomposition of complete graphs into $(0,2)$-prisms %J Czechoslovak Mathematical Journal %D 2014 %P 37-43 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0080-2/ %R 10.1007/s10587-014-0080-2 %G en %F 10_1007_s10587_014_0080_2
Cichacz, Sylwia; Dib, Soleh; Froncek, Dalibor. Decomposition of complete graphs into $(0,2)$-prisms. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 37-43. doi: 10.1007/s10587-014-0080-2
Cité par Sources :