Keywords: number of spanning trees; asymptotic; prime partition
@article{10_1007_s10587_014_0079_8,
author = {Azarija, Jernej},
title = {Counting graphs with different numbers of spanning trees through the counting of prime partitions},
journal = {Czechoslovak Mathematical Journal},
pages = {31--35},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0079-8},
mrnumber = {3247440},
zbl = {06391472},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0079-8/}
}
TY - JOUR AU - Azarija, Jernej TI - Counting graphs with different numbers of spanning trees through the counting of prime partitions JO - Czechoslovak Mathematical Journal PY - 2014 SP - 31 EP - 35 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0079-8/ DO - 10.1007/s10587-014-0079-8 LA - en ID - 10_1007_s10587_014_0079_8 ER -
%0 Journal Article %A Azarija, Jernej %T Counting graphs with different numbers of spanning trees through the counting of prime partitions %J Czechoslovak Mathematical Journal %D 2014 %P 31-35 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0079-8/ %R 10.1007/s10587-014-0079-8 %G en %F 10_1007_s10587_014_0079_8
Azarija, Jernej. Counting graphs with different numbers of spanning trees through the counting of prime partitions. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 31-35. doi: 10.1007/s10587-014-0079-8
[1] Azarija, J., Škrekovski, R.: Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees. Math. Bohem. 121-131 (2013), 138. | MR | Zbl
[2] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press Cambridge (2009). | MR | Zbl
[3] Harary, F., Palmer, E. M.: Graphical Enumeration. Academic Press New York (1973). | MR | Zbl
[4] Hardy, G. H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17 (1917), 75-115. | MR
[5] Roth, K. F., Szekeres, G.: Some asymptotic formulae in the theory of partitions. Q. J. Math., Oxf. II. Ser. 5 (1954), 241-259. | DOI | MR | Zbl
[6] Sedláček, J.: On the number of spanning trees of finite graphs. Čas. Pěst. Mat. 94 (1969), 217-221. | MR | Zbl
[7] Sedláček, J.: On the minimal graph with a given number of spanning trees. Can. Math. Bull. 13 (1970), 515-517. | DOI | MR | Zbl
[8] Sedláček, J.: Regular graphs and their spanning trees. Čas. Pěst. Mat. 95 (1970), 402-426. | MR | Zbl
Cité par Sources :