Counting graphs with different numbers of spanning trees through the counting of prime partitions
Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 31-35
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $A_n$ $(n \geq 1)$ be the set of all integers $x$ such that there exists a connected graph on $n$ vertices with precisely $x$ spanning trees. It was shown by Sedláček that $|A_n|$ grows faster than the linear function. In this paper, we show that $|A_{n}|$ grows faster than $\sqrt {n} {\rm e}^{({2\pi }/{\sqrt 3})\sqrt {n/\log {n}}}$ by making use of some asymptotic results for prime partitions. The result settles a question posed in J. Sedláček, On the number of spanning trees of finite graphs, Čas. Pěst. Mat., 94 (1969), 217–221.
Let $A_n$ $(n \geq 1)$ be the set of all integers $x$ such that there exists a connected graph on $n$ vertices with precisely $x$ spanning trees. It was shown by Sedláček that $|A_n|$ grows faster than the linear function. In this paper, we show that $|A_{n}|$ grows faster than $\sqrt {n} {\rm e}^{({2\pi }/{\sqrt 3})\sqrt {n/\log {n}}}$ by making use of some asymptotic results for prime partitions. The result settles a question posed in J. Sedláček, On the number of spanning trees of finite graphs, Čas. Pěst. Mat., 94 (1969), 217–221.
DOI :
10.1007/s10587-014-0079-8
Classification :
05A16, 05C35
Keywords: number of spanning trees; asymptotic; prime partition
Keywords: number of spanning trees; asymptotic; prime partition
@article{10_1007_s10587_014_0079_8,
author = {Azarija, Jernej},
title = {Counting graphs with different numbers of spanning trees through the counting of prime partitions},
journal = {Czechoslovak Mathematical Journal},
pages = {31--35},
year = {2014},
volume = {64},
number = {1},
doi = {10.1007/s10587-014-0079-8},
mrnumber = {3247440},
zbl = {06391472},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0079-8/}
}
TY - JOUR AU - Azarija, Jernej TI - Counting graphs with different numbers of spanning trees through the counting of prime partitions JO - Czechoslovak Mathematical Journal PY - 2014 SP - 31 EP - 35 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0079-8/ DO - 10.1007/s10587-014-0079-8 LA - en ID - 10_1007_s10587_014_0079_8 ER -
%0 Journal Article %A Azarija, Jernej %T Counting graphs with different numbers of spanning trees through the counting of prime partitions %J Czechoslovak Mathematical Journal %D 2014 %P 31-35 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-014-0079-8/ %R 10.1007/s10587-014-0079-8 %G en %F 10_1007_s10587_014_0079_8
Azarija, Jernej. Counting graphs with different numbers of spanning trees through the counting of prime partitions. Czechoslovak Mathematical Journal, Tome 64 (2014) no. 1, pp. 31-35. doi: 10.1007/s10587-014-0079-8
Cité par Sources :