On the Hilbert $2$-class field tower of some abelian $2$-extensions over the field of rational numbers
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1135-1148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known by results of Golod and Shafarevich that the Hilbert $2$-class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian $2$-extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian $2$-extension over $\mathbb Q$ in which eight primes ramify and one of theses primes $\equiv -1\pmod 4$, the Hilbert $2$-class field tower is infinite.
It is well known by results of Golod and Shafarevich that the Hilbert $2$-class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian $2$-extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian $2$-extension over $\mathbb Q$ in which eight primes ramify and one of theses primes $\equiv -1\pmod 4$, the Hilbert $2$-class field tower is infinite.
DOI : 10.1007/s10587-013-0075-4
Classification : 11R11, 11R29, 11R37
Keywords: class group; class field tower; multiquadratic number field
@article{10_1007_s10587_013_0075_4,
     author = {Azizi, Abdelmalek and Mouhib, Ali},
     title = {On the {Hilbert} $2$-class field tower of some abelian $2$-extensions over the field of rational numbers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1135--1148},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0075-4},
     mrnumber = {3165518},
     zbl = {06373965},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0075-4/}
}
TY  - JOUR
AU  - Azizi, Abdelmalek
AU  - Mouhib, Ali
TI  - On the Hilbert $2$-class field tower of some abelian $2$-extensions over the field of rational numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1135
EP  - 1148
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0075-4/
DO  - 10.1007/s10587-013-0075-4
LA  - en
ID  - 10_1007_s10587_013_0075_4
ER  - 
%0 Journal Article
%A Azizi, Abdelmalek
%A Mouhib, Ali
%T On the Hilbert $2$-class field tower of some abelian $2$-extensions over the field of rational numbers
%J Czechoslovak Mathematical Journal
%D 2013
%P 1135-1148
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0075-4/
%R 10.1007/s10587-013-0075-4
%G en
%F 10_1007_s10587_013_0075_4
Azizi, Abdelmalek; Mouhib, Ali. On the Hilbert $2$-class field tower of some abelian $2$-extensions over the field of rational numbers. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1135-1148. doi: 10.1007/s10587-013-0075-4

[1] III., F. Gerth: Some real quadratic fields with infinite Hilbert $2$-class field towers. Jap. J. Math., New Ser. 31 (2005), 175-181. | DOI | MR | Zbl

[2] Golod, E. S., Shafarevich, I. R.: On the class field tower. Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), 261-272 Russian; English translation in Transl., Ser. 2, Am. Math. Soc. 48 (1965), 91-102. | MR

[3] Hasse, H.: Neue Begründung und Verallgemeinerung der Theorie des Normenrestsymbols. J. f. M. 162 (1930), 134-144 German.

[4] Ishida, M.: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer Berlin (1976). | MR

[5] Jehne, W.: On knots in algebraic number theory. J. Reine Angew. Math. 311-312 (1979), 215-254. | MR | Zbl

[6] Kuroda, S.: Über den Dirichletschen Körper. J. Fac. Sci. Univ. Tokyo, Sect. I 4 (1943), 383-406 German. | MR | Zbl

[7] Kuz'min, L. V.: Homologies of profinite groups, the Schur multiplicator and class field theory. Izv. Akad. Nauk. SSSR Ser. Mat. 33 (1969), 1220-1254 Russian. | MR

[8] Maire, C.: A refinement of the Golod-Shafarevich theorem. (Un raffinement du théoreme de Golod-Šafarevič). Nagoya Math. J. 150 (1998), 1-11 French. | MR

[9] Mouhib, A.: On the Hilbert $2$-class field tower of real quadratic fields. (Sur la tour des $2$-corps de classes de Hilbert des corps quadratiques réels). Ann. Sci. Math. Qu. 28 (2004), 179-187 French. | MR

Cité par Sources :