Estimates for the commutator of bilinear Fourier multiplier
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1113-1134
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $b_1, b_2 \in {\rm BMO}(\mathbb {R}^n)$ and $T_{\sigma }$ be a bilinear Fourier multiplier operator with associated multiplier $\sigma $ satisfying the Sobolev regularity that $\sup _{\kappa \in \mathbb {Z}} \|\sigma _{\kappa }\| _{W^{s_1,s_2}(\mathbb {R}^{2n})}\infty $ for some $s_1,s_2\in (n/2,n]$. In this paper, the behavior on $L^{p_1}(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_1,p_2\in (1,\infty ))$, on $H^1(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_2\in [2,\infty ))$, and on $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$, is considered for the commutator $T_{{\sigma }, \vec {b}} $ defined by $$ \begin {aligned} T_{\sigma ,\vec {b}} (f_1,f_2) (x)=(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(b_1f_1, f_2)(x) + b_2(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(f_1, b_2f_2)(x) . \end {aligned} $$ By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita.
Let $b_1, b_2 \in {\rm BMO}(\mathbb {R}^n)$ and $T_{\sigma }$ be a bilinear Fourier multiplier operator with associated multiplier $\sigma $ satisfying the Sobolev regularity that $\sup _{\kappa \in \mathbb {Z}} \|\sigma _{\kappa }\| _{W^{s_1,s_2}(\mathbb {R}^{2n})}\infty $ for some $s_1,s_2\in (n/2,n]$. In this paper, the behavior on $L^{p_1}(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_1,p_2\in (1,\infty ))$, on $H^1(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_2\in [2,\infty ))$, and on $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$, is considered for the commutator $T_{{\sigma }, \vec {b}} $ defined by $$ \begin {aligned} T_{\sigma ,\vec {b}} (f_1,f_2) (x)=(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(b_1f_1, f_2)(x) + b_2(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(f_1, b_2f_2)(x) . \end {aligned} $$ By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita.
DOI : 10.1007/s10587-013-0074-5
Classification : 42B15
Keywords: bilinear Fourier multiplier operator; commutator; Hardy space
@article{10_1007_s10587_013_0074_5,
     author = {Hu, Guoen and Yi, Wentan},
     title = {Estimates for the commutator of bilinear {Fourier} multiplier},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1113--1134},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0074-5},
     mrnumber = {3165517},
     zbl = {06373964},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/}
}
TY  - JOUR
AU  - Hu, Guoen
AU  - Yi, Wentan
TI  - Estimates for the commutator of bilinear Fourier multiplier
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1113
EP  - 1134
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/
DO  - 10.1007/s10587-013-0074-5
LA  - en
ID  - 10_1007_s10587_013_0074_5
ER  - 
%0 Journal Article
%A Hu, Guoen
%A Yi, Wentan
%T Estimates for the commutator of bilinear Fourier multiplier
%J Czechoslovak Mathematical Journal
%D 2013
%P 1113-1134
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/
%R 10.1007/s10587-013-0074-5
%G en
%F 10_1007_s10587_013_0074_5
Hu, Guoen; Yi, Wentan. Estimates for the commutator of bilinear Fourier multiplier. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1113-1134. doi: 10.1007/s10587-013-0074-5

[1] Anh, B. T., Duong, X. T.: Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers. Bull. Sci. Math. 137 (2013), 63-75. | DOI | MR | Zbl

[2] Christ, M.: Weak type (1,1) bounds for rough operators. Ann. Math. (2) 128 (1998), 19-42. | MR

[3] Coifman, R. R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212 (1975), 315-331. | DOI | MR | Zbl

[4] Coifman, R. R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and PDE. Beijing Lectures in Harmonic Analysis. (Summer School in Analysis, Beijing, The People's Republic of China, September 1984). Annals of Mathematics Studies 112 Princeton University Press Princeton (1986), 3-45. | MR

[5] Fujita, M., Tomita, N.: Weighted norm inequalities for multilinear Fourier multipliers. Trans. Am. Math. Soc. 364 (2012), 6335-6353. | DOI | MR | Zbl

[6] García-Cuerva, J., Harboure, E., Segovia, C., Torrea, J. L.: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40 (1991), 1397-1420. | DOI | MR | Zbl

[7] Grafakos, L., Miyachi, A., Tomita, N.: On multilinear Fourier multipliers of limited smoothness. Can. J. Math. 65 (2013), 299-330. | DOI | MR | Zbl

[8] Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators. J. Reine Angew. Math. 668 (2012), 133-147. | MR | Zbl

[9] Grafakos, L., Torres, R. H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165 (2002), 124-164. | DOI | MR | Zbl

[10] Hu, G., Lin, C.-C.: Weighted norm inequalities for multilinear singular integral operators and applications. arXiv: 1208.6346.

[11] Kenig, C. E., Stein, E. M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6 (1999), 1-15. | DOI | MR | Zbl

[12] Kurtz, D. S., Wheeden, R. L.: Results on weighted norm inequalities for multipliers. Trans. Am. Math. Soc. 255 (1979), 343-362. | DOI | MR | Zbl

[13] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 1222-1264. | DOI | MR | Zbl

[14] Meda, S., Sjögren, P., Vallarino, M.: On the $H^1-L^1$ boundedness of operators. Proc. Am. Math. Soc. 136 (2008), 2921-2931. | DOI | MR | Zbl

[15] Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multipliers. Rev. Mat. Iberoam. 29 495-530 (2013). | DOI | MR | Zbl

[16] Pérez, C., Torres, R. H.: Sharp maximal function estimates for multilinear singular integrals. Harmonic Analysis at Mount Holyoke. Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, Mount Holyoke College, South Hadley, MA, USA, June 25--July 5, 2001 W. Beckner et al. American Mathematical Society Providence Contemp. Math. 320 (2003), 323-331. | DOI | MR | Zbl

[17] Tomita, N.: A Hörmander type multiplier theorem for multilinear operators. J. Funct. Anal. 259 (2010), 2028-2044. | DOI | MR | Zbl

Cité par Sources :