Estimates for the commutator of bilinear Fourier multiplier
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1113-1134.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $b_1, b_2 \in {\rm BMO}(\mathbb {R}^n)$ and $T_{\sigma }$ be a bilinear Fourier multiplier operator with associated multiplier $\sigma $ satisfying the Sobolev regularity that $\sup _{\kappa \in \mathbb {Z}} \|\sigma _{\kappa }\| _{W^{s_1,s_2}(\mathbb {R}^{2n})}\infty $ for some $s_1,s_2\in (n/2,n]$. In this paper, the behavior on $L^{p_1}(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_1,p_2\in (1,\infty ))$, on $H^1(\mathbb {R}^n)\times L^{p_2}(\mathbb {R}^n)$ $(p_2\in [2,\infty ))$, and on $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$, is considered for the commutator $T_{{\sigma }, \vec {b}} $ defined by $$ \begin {aligned} T_{\sigma ,\vec {b}} (f_1,f_2) (x)=(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(b_1f_1, f_2)(x) + b_2(x)T_{\sigma }(f_1, f_2)(x)-T_{\sigma }(f_1, b_2f_2)(x) . \end {aligned} $$ By kernel estimates of the bilinear Fourier multiplier operators and employing some techniques in the theory of bilinear singular integral operators, it is proved that these mapping properties are very similar to those of the bilinear Fourier multiplier operator which were established by Miyachi and Tomita.
DOI : 10.1007/s10587-013-0074-5
Classification : 42B15
Keywords: bilinear Fourier multiplier operator; commutator; Hardy space
@article{10_1007_s10587_013_0074_5,
     author = {Hu, Guoen and Yi, Wentan},
     title = {Estimates for the commutator of bilinear {Fourier} multiplier},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1113--1134},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.1007/s10587-013-0074-5},
     mrnumber = {3165517},
     zbl = {06373964},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/}
}
TY  - JOUR
AU  - Hu, Guoen
AU  - Yi, Wentan
TI  - Estimates for the commutator of bilinear Fourier multiplier
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1113
EP  - 1134
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/
DO  - 10.1007/s10587-013-0074-5
LA  - en
ID  - 10_1007_s10587_013_0074_5
ER  - 
%0 Journal Article
%A Hu, Guoen
%A Yi, Wentan
%T Estimates for the commutator of bilinear Fourier multiplier
%J Czechoslovak Mathematical Journal
%D 2013
%P 1113-1134
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/
%R 10.1007/s10587-013-0074-5
%G en
%F 10_1007_s10587_013_0074_5
Hu, Guoen; Yi, Wentan. Estimates for the commutator of bilinear Fourier multiplier. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1113-1134. doi : 10.1007/s10587-013-0074-5. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0074-5/

Cité par Sources :