Some properties of the family $\Gamma $ of modular Lie superalgebras
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1087-1112
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.
In this paper, we continue to investigate some properties of the family $\Gamma $ of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras $\Gamma $ are intrinsic. Thereby, we classify these Lie superalgebras in the sense of isomorphism. Finally, we study the associative forms and Killing forms of these Lie superalgebras and determine which superalgebras in the family are restrictable.
DOI : 10.1007/s10587-013-0073-6
Classification : 17B50
Keywords: modular Lie superalgebra; restricted Lie superalgebra; filtration
@article{10_1007_s10587_013_0073_6,
     author = {Xu, Xiaoning and Chen, Liangyun},
     title = {Some properties of the family $\Gamma $ of modular {Lie} superalgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1087--1112},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0073-6},
     mrnumber = {3165516},
     zbl = {1299.17017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0073-6/}
}
TY  - JOUR
AU  - Xu, Xiaoning
AU  - Chen, Liangyun
TI  - Some properties of the family $\Gamma $ of modular Lie superalgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1087
EP  - 1112
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0073-6/
DO  - 10.1007/s10587-013-0073-6
LA  - en
ID  - 10_1007_s10587_013_0073_6
ER  - 
%0 Journal Article
%A Xu, Xiaoning
%A Chen, Liangyun
%T Some properties of the family $\Gamma $ of modular Lie superalgebras
%J Czechoslovak Mathematical Journal
%D 2013
%P 1087-1112
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0073-6/
%R 10.1007/s10587-013-0073-6
%G en
%F 10_1007_s10587_013_0073_6
Xu, Xiaoning; Chen, Liangyun. Some properties of the family $\Gamma $ of modular Lie superalgebras. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1087-1112. doi: 10.1007/s10587-013-0073-6

[1] Block, R. E., Wilson, R. L.: Classification of the restricted simple Lie algebras. J. Algebra 114 (1988), 115-259. | DOI | MR

[2] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix. SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 5 Paper 060, 63 pages (2009). | MR | Zbl

[3] Martin, A. J. Calderón, Delgado, J. M. Sánchez: On the structure of graded Lie superalgebras. Mod. Phys. Lett. A 27 (2012), 1250142, 18 pages. | DOI | MR

[4] Chen, L. Y., Meng, D. J., Zhang, Y. Z.: The Frattini subalgebra of restricted Lie superalgebras. Acta Math. Sin., Engl. Ser. 22 (2006), 1343-1356. | DOI | MR | Zbl

[5] Draper, C., Elduque, A., González, C. Martín: Fine gradings on exceptional simple Lie superalgebras. Int. J. Math. 22 (2011), 1823-1855. | DOI | MR

[6] Fei, Q. Y.: On new simple Lie algebras of Shen Guangyu. Chin. Ann. Math., Ser. B 10 (1989), 448-457. | MR | Zbl

[7] Kac, V. G.: The classification of the restricted simple Lie algebras over a field with non-zero characteristic. Math. USSR, Izv. 4 (1970), 391-413. | DOI | MR

[8] Kac, V. G.: A description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated. Math. USSR, Izv. 8 (1975), 801-835 \kern 3sp translated from Izv. Akad. Nauk SSSR Ser. Mat. 8 (1975), 800-834 Russian. | MR

[9] Kac, V. G.: Lie superalgebras. Adv. Math. 26 (1977), 8-96. | DOI | MR | Zbl

[10] Kac, V. G.: Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math. (1998), 139 1-55. | MR | Zbl

[11] Kochetkov, Y., Leites, D.: Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group. Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Novosibirsk/USSR 1989, Contemp. Math. 131 (1992), 59-67. | MR | Zbl

[12] Leites, D.: Towards classification of simple finite dimensional modular Lie superalgebras. J. Prime Res. Math. 3 (2007), 101-110. | MR | Zbl

[13] Liu, W. D., Zhang, Y. Z., Wang, X. L.: The derivation algebra of the Cartan-type Lie superalgebra $HO$. J. Algebra 273 (2004), 176-205. | DOI | MR | Zbl

[14] Liu, W. D., Zhang, Y. Z.: Automorphism groups of restricted Cartan-type Lie superalgebras. Commun. Algebra 34 (2006), 3767-3784. | DOI | MR | Zbl

[15] Petrogradskiĭ, V. M.: Identities in the enveloping algebras of modular Lie superalgebras. J. Algebra 145 (1992), 1-21. | DOI | MR

[16] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716 Springer, Berlin (1979). | DOI | MR | Zbl

[17] Shen, G. Y.: An intrinsic property of the Lie algebra $K(m,n)$. Chin. Ann. Math. 2 (1981), 105-115. | Zbl

[18] Shen, G. Y.: New simple Lie algebras of characteristic $p$. Chin. Ann. Math., Ser. B 4 (1983), 329-346. | MR | Zbl

[19] Strade, H.: The classification of the simple modular Lie algebras. IV: Determining the associated graded algebra. Ann. Math. (2) 138 (1993), 1-59. | MR | Zbl

[20] Strade, H., Farnsteiner, R.: Modular Lie Algebras and Their Representations. Monographs and Textbooks in Pure and Applied Mathematics 116 Marcel Dekker, New York (1988). | MR | Zbl

[21] Strade, H., Wilson, R. L.: Classification of simple Lie algebras over algebraically closed fields of prime characteristic. Bull. Am. Math. Soc., New Ser. 24 (1991), 357-362. | DOI | MR | Zbl

[22] Wang, Y., Zhang, Y. Z.: A new definition of restricted Lie superalgebras. Chinese Kexue Tongbao 44 (1999), 807-813. | MR

[23] Wang, Y., Zhang, Y. Z.: The associative forms of the graded Cartan type Lie superalgebras. Adv. Math., Beijing 29 (2000), 65-70. | MR | Zbl

[24] Wang, W. Q., Zhao, L.: Representations of Lie superalgebras in prime characteristic. I. Proc. Lond. Math. Soc. 99 (2009), 145-167. | DOI | MR | Zbl

[25] Wang, X. L., Liu, W. D.: Filtered Lie superalgebras of odd Hamiltonian type $HO$. English, Chinese summary Adv. Math., Beijing 36 (2007), 710-720. | MR

[26] Wilson, R. L.: A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic. J. Algebra 40 (1976), 418-465. | DOI | MR | Zbl

[27] Xu, X. N., Zhang, Y. Z., Chen, L. Y.: The finite-dimensional modular Lie superalgebra $\Gamma$. Algebra Colloq. 17 (2010), 525-540. | MR | Zbl

[28] Xu, X. N., Chen, L. Y., Zhang, Y. Z.: On the modular Lie superalgebra $\Omega$. J. Pure Appl. Algebra 215 (2011), 1093-1101. | DOI | MR

[29] Zhang, Y. Z.: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull. 42 (1997), 720-724. | DOI | MR | Zbl

[30] Zhang, Y. Z., Nan, J. Z.: Finite-dimensional Lie superalgebras $W(m,n, t)$ and $S(m,n, t)$ of Cartan type. Adv. Math., Beijing 27 (1998), 240-246. | MR

[31] Zhang, Y. Z., Fu, H. C.: Finite-dimensional Hamiltonian Lie superalgebra. Commun. Algebra 30 (2002), 2651-2673. | DOI | MR | Zbl

[32] Zhang, Y. Z., Liu, W. D.: Modular Lie superalgebras. Chinese Science Press Beijing (2004). | MR

[33] Zhang, Y. Z., Zhang, Q. C.: Finite-dimensional modular Lie superalgebra $\Omega$. J. Algebra 321 (2009), 3601-3619. | DOI | MR | Zbl

Cité par Sources :