Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1057-1085
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a complete characterization of those $f\colon [0,1] \to X$ (where $X$ is a Banach space) which allow an equivalent $C^{1,\rm BV}$ parametrization (i.e., a $C^1$ parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for $X= \mathbb R^n$. We present examples which show applicability of our characterizations. For example, we show that the $C^{1,\rm BV}$ and $C^2$ parametrization problems are equivalent for $X=\mathbb R$ but are not equivalent for $X = \mathbb R^2$.
We give a complete characterization of those $f\colon [0,1] \to X$ (where $X$ is a Banach space) which allow an equivalent $C^{1,\rm BV}$ parametrization (i.e., a $C^1$ parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for $X= \mathbb R^n$. We present examples which show applicability of our characterizations. For example, we show that the $C^{1,\rm BV}$ and $C^2$ parametrization problems are equivalent for $X=\mathbb R$ but are not equivalent for $X = \mathbb R^2$.
DOI : 10.1007/s10587-013-0072-7
Classification : 26A51, 26E20, 53A04
Keywords: curve in Banach spaces; $C^{1, \rm BV}$ parametrization; parametrization with bounded convexity
@article{10_1007_s10587_013_0072_7,
     author = {Duda, Jakub and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {Curves in {Banach} spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1057--1085},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0072-7},
     mrnumber = {3165515},
     zbl = {06373962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0072-7/}
}
TY  - JOUR
AU  - Duda, Jakub
AU  - Zajíček, Luděk
TI  - Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1057
EP  - 1085
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0072-7/
DO  - 10.1007/s10587-013-0072-7
LA  - en
ID  - 10_1007_s10587_013_0072_7
ER  - 
%0 Journal Article
%A Duda, Jakub
%A Zajíček, Luděk
%T Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
%J Czechoslovak Mathematical Journal
%D 2013
%P 1057-1085
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0072-7/
%R 10.1007/s10587-013-0072-7
%G en
%F 10_1007_s10587_013_0072_7
Duda, Jakub; Zajíček, Luděk. Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1057-1085. doi: 10.1007/s10587-013-0072-7

[1] Alexandrov, A. D., Reshetnyak, Yu. G.: General Theory of Irregular Curves. Transl. from the Russian by L. Ya. Yuzina. Mathematics and Its Applications: Soviet Series 29 Kluwer Academic Publishers, Dordrecht (1989). | MR | Zbl

[2] Bourbaki, N.: Éléments de Mathématique. I: Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire). Chapitres 1, 2 et 3: Dérievées. Primitives et intégrales. Fonctions élémentaires. Second ed. French Actualés Sci. Indust. 1074 Hermann, Paris (1958).

[3] Chistyakov, V. V.: On mappings of bounded variation. J. Dyn. Control Sys. 3 (1997), 261-289. | DOI | MR | Zbl

[4] Duda, J.: Curves with finite turn. Czech. Math. J. 58 (2008), 23-49. | DOI | MR | Zbl

[5] Duda, J.: Second order differentiability of paths via a generalized $\frac{1}{2}$-variation. J. Math. Anal. Appl. 338 (2008), 628-638. | DOI | MR | Zbl

[6] Duda, J.: Generalized $\alpha$-variation and Lebesgue equivalence to differentiable functions. Fundam. Math. 205 (2009), 191-217. | DOI | MR | Zbl

[7] Duda, J., Zajíček, L.: Curves in Banach spaces---differentiability via homeomorphisms. Rocky Mt. J. Math. 37 (2007), 1493-1525. | DOI | MR

[8] Duda, J., Zajíek, L.: Curves in Banach spaces which allow a $C^2$-parametrization or a parametrization with finite convexity. J. London Math. Soc., II. Ser. 83 (2011), 733-754. | DOI | MR

[9] Duda, J., Zajíek, L.: On vector-valued curves that allow a $C^{1,\alpha}$-parametrization. Acta Math. Hung. 127 (2010), 85-111. | DOI | MR

[10] Duda, J., Zajíček, L.: Curves in Banach spaces which allow a $C^2$-parametrization. J. Lond. Math. Soc., II. Ser. 83 (2011), 733-754. | DOI | MR

[11] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 153. Springer, New York (1969). | MR | Zbl

[12] Kirchheim, B.: Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure. Proc. Am. Math. Soc. 121 (1994), 113-123. | DOI | MR | Zbl

[13] Kühnel, W.: Differential Geometry. Curves-Surfaces-Manifolds. Transl. from the German by Bruce Hunt. Student Mathematical Library 16. AMS Providence, RI (2002). | MR | Zbl

[14] Laczkovich, M., Preiss, D.: $\alpha$-variation and transformation into $C\sp n$ functions. Indiana Univ. Math. J. 34 (1985), 405-424. | DOI | MR | Zbl

[15] Lebedev, V. V.: Homeomorphisms of an interval and smoothness of a function. Math. Notes 40 (1986), 713-719 translation from Mat. Zametki 40 (1986), 364-373 Russian. | DOI | MR | Zbl

[16] Massera, J. L., Schäffer, J. J.: Linear differential equations and functional analysis I. Ann. Math. (2) 67 (1958), 517-573. | DOI | MR | Zbl

[17] Pogorelov, A. V.: Extrinsic Geometry of Convex Surfaces. Translated from the Russian by Israel Program for Scientific Translations. Translations of Mathematical Monographs 35 AMS, Providence, RI (1973). | DOI | MR | Zbl

[18] Roberts, A. W., Varberg, D. E.: Convex Functions. Pure and Applied Mathematics 57 Academic Press, a subsidiary of Harcourt Brace Jovanovich, New York (1973). | MR | Zbl

[19] Veselý, L.: On the multiplicity points of monotone operators on separable Banach spaces. Commentat. Math. Univ. Carol. 27 (1986), 551-570. | MR

[20] Veselý, L., Zajíek, L.: Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289 1-48 (1989). | MR

[21] Veselý, L., Zajíek, L.: On vector functions of bounded convexity. Math. Bohem. 133 (2008), 321-335. | MR

Cité par Sources :