Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1057-1085
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give a complete characterization of those $f\colon [0,1] \to X$ (where $X$ is a Banach space) which allow an equivalent $C^{1,\rm BV}$ parametrization (i.e., a $C^1$ parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for $X= \mathbb R^n$. We present examples which show applicability of our characterizations. For example, we show that the $C^{1,\rm BV}$ and $C^2$ parametrization problems are equivalent for $X=\mathbb R$ but are not equivalent for $X = \mathbb R^2$.
We give a complete characterization of those $f\colon [0,1] \to X$ (where $X$ is a Banach space) which allow an equivalent $C^{1,\rm BV}$ parametrization (i.e., a $C^1$ parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for $X= \mathbb R^n$. We present examples which show applicability of our characterizations. For example, we show that the $C^{1,\rm BV}$ and $C^2$ parametrization problems are equivalent for $X=\mathbb R$ but are not equivalent for $X = \mathbb R^2$.
DOI :
10.1007/s10587-013-0072-7
Classification :
26A51, 26E20, 53A04
Keywords: curve in Banach spaces; $C^{1, \rm BV}$ parametrization; parametrization with bounded convexity
Keywords: curve in Banach spaces; $C^{1, \rm BV}$ parametrization; parametrization with bounded convexity
@article{10_1007_s10587_013_0072_7,
author = {Duda, Jakub and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {Curves in {Banach} spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity},
journal = {Czechoslovak Mathematical Journal},
pages = {1057--1085},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0072-7},
mrnumber = {3165515},
zbl = {06373962},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0072-7/}
}
TY - JOUR
AU - Duda, Jakub
AU - Zajíček, Luděk
TI - Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
JO - Czechoslovak Mathematical Journal
PY - 2013
SP - 1057
EP - 1085
VL - 63
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0072-7/
DO - 10.1007/s10587-013-0072-7
LA - en
ID - 10_1007_s10587_013_0072_7
ER -
%0 Journal Article
%A Duda, Jakub
%A Zajíček, Luděk
%T Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity
%J Czechoslovak Mathematical Journal
%D 2013
%P 1057-1085
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0072-7/
%R 10.1007/s10587-013-0072-7
%G en
%F 10_1007_s10587_013_0072_7
Duda, Jakub; Zajíček, Luděk. Curves in Banach spaces which allow a $C^{1,\rm BV}$ parametrization or a parametrization with finite convexity. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1057-1085. doi: 10.1007/s10587-013-0072-7
Cité par Sources :