Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1049-1056.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a ring. We recall that $R$ is called a near pseudo-valuation ring if every minimal prime ideal of $R$ is strongly prime. Let now $\sigma $ be an automorphism of $R$ and $\delta $ a $\sigma $-derivation of $R$. Then $R$ is said to be an almost $\delta $-divided ring if every minimal prime ideal of $R$ is $\delta $-divided. Let $R$ be a Noetherian ring which is also an algebra over $\mathbb {Q}$ ($\mathbb {Q}$ is the field of rational numbers). Let $\sigma $ be an automorphism of $R$ such that $R$ is a $\sigma (*)$-ring and $\delta $ a $\sigma $-derivation of $R$ such that $\sigma (\delta (a)) = \delta (\sigma (a))$ for all $a \in R$. Further, if for any strongly prime ideal $U$ of $R$ with $\sigma (U) = U$ and $\delta (U)\subseteq \delta $, $U[x; \sigma , \delta ]$ is a strongly prime ideal of $R[x; \sigma , \delta ]$, then we prove the following: (1) $R$ is a near pseudo valuation ring if and only if the Ore extension $R[x; \sigma ,\delta ]$ is a near pseudo valuation ring. (2) $R$ is an almost $\delta $-divided ring if and only if $R[x;\sigma ,\delta ]$ is an almost $\delta $-divided ring.
DOI : 10.1007/s10587-013-0071-8
Classification : 16N40, 16P40, 16S36
Keywords: Ore extension; automorphism; derivation; minimal prime; pseudo-valuation ring; near pseudo-valuation ring
@article{10_1007_s10587_013_0071_8,
     author = {Bhat, Vijay Kumar},
     title = {Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1056},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.1007/s10587-013-0071-8},
     mrnumber = {3165514},
     zbl = {1299.16020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0071-8/}
}
TY  - JOUR
AU  - Bhat, Vijay Kumar
TI  - Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1049
EP  - 1056
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0071-8/
DO  - 10.1007/s10587-013-0071-8
LA  - en
ID  - 10_1007_s10587_013_0071_8
ER  - 
%0 Journal Article
%A Bhat, Vijay Kumar
%T Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings
%J Czechoslovak Mathematical Journal
%D 2013
%P 1049-1056
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0071-8/
%R 10.1007/s10587-013-0071-8
%G en
%F 10_1007_s10587_013_0071_8
Bhat, Vijay Kumar. Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1049-1056. doi : 10.1007/s10587-013-0071-8. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0071-8/

Cité par Sources :